Военные ЛА68

Авиамодель Су-27УБ

Су-27УБ — двухместный сверхзвуковой учебно-боевой истребитель, модификация самолета Су-27. Строится серийно на АО «Иркут» (ИАПО) с 1986 г. К 1998 г. выпущено более 120 машин. С 1986 г. находится на вооружении ВВС России, с 1992 г. — ВВС Украины и Беларуси. Для поставок в страны дальнего зарубежья разработан экспортный вариант — Су-27УБК.

В связи с тем, что самолет Су-27 значительно отличался от всех существующих в СССР истребителей как по уровню летно-технических характеристик, так и по возможностям системы управления вооружением, комплекса навигации и другого оборудования, для эффективной подготовки летчиков потребовалось создание его двухместного учебно-боевого варианта, названного Су-27УБ. При этом предполагалось, что сохранение на «спарке» в полном объеме бортового радиоэлектронного оборудования и вооружения одноместной машины позволит использовать ее и как полноценный боевой самолет. Более того, учитывая большую дальность и продолжительность полета Су-27, наличие на борту истребителя двух членов экипажа в ряде случаев было даже предпочтительнее.

К проектированию Су-27УБ (заводской шифр — Т-10У) коллектив МЗ им. П.О.Сухого приступил в конце 70-х годов, еще до выхода на испытания первых самолетов новой компоновки. Перед разработчиками стояла задача обеспечить высокую степень унификации конструкции и БРЭО одноместной и двухместной машин, при этом необходимо было сохранить высокие летные характеристики истребителя. В 1980 году подготовили эскизный проект «спарки». Аэродинамическая компоновка Су-27УБ в целом повторяла компоновку одноместного самолета. Основные отличия касались конструкции головной части фюзеляжа, включавшей двухместную кабину с размещением членов экипажа по схеме «тандем», и вертикального оперения, площадь которого пришлось увеличить для сохранения характеристик путевой устойчивости.

Для обеспечения необходимого обзора из второй кабины рабочее место заднего летчика подняли относительно переднего, а для удобства эксплуатации и уменьшения времени, необходимого на покидание самолета в аварийной ситуации, обе кабины оборудовали единой открывающейся вверх-назад подвижной частью фонаря. Размещение второго члена экипажа выше первого потребовало изменить обводы гаргрота над передним топливным баком и центропланом (самолет приобрел характерную «горбатую» форму), но позволило сохранить конструкцию и компоновку передней опоры шасси и ее ниши, а также расположить под второй кабиной два боковых отсека с радиоэлектронным оборудованием. При этом удалось избежать сокращения запаса топлива и удлинения фюзеляжа. Каждый киль «спарки» состоял из соответствующей консоли одноместного истребителя и проставки высотой 420 мм, увеличивающей площадь на 1.55 м2.

В 1984 году на МЗ им. П.О.Сухого был подготовлен экземпляр Су-27УБ, поступивший на статические испытания. В следующем году завершилась сборка и первого летного образца (Т-10У-1). 7 марта 1985 года летчик-испытатель Н.Ф.Садовников поднял его в небо. В 1986 году к нему присоединились второй и третий опытные самолеты — Т-10У-2 и Т-10У-3. Опытные «спарки» изготавливались в Комсомольске-на-Амуре с окончательной сборкой на МЗ им. П.О.Сухого в Москве, а для крупносерийного производства Су-27УБ был выбран Иркутский авиационный завод им. 60-летия СССР.

Облет головного серийного Су-27УБ (Т-10У-4), построенного в Иркутске, был выполнен заводскими летчиками-испытателями Г.Е.Булановым и Н.Н.Ивановым 10 сентября 1986 года. Вскоре учебно-боевые самолеты стали поступать в строевые части ВВС и авиации ПВО, перевооружаемые на Су-27.

Основные отличия от самолета Су-27:

  • в связи с организацией двухместной кабины экипажа (по схеме «тандем» с общим открывающимся вверх-назад фонарем) изменены обводы головной части фюзеляжа и гаргрота;
  • площадь вертикального оперения увеличена на 3.1 м2 за счет применения проставок высотой 420 мм в корневой части килей, стояночная высота самолета возросла с 5.932 до 6.357 м;
  • площадь тормозного щитка увеличена с 2.6 до 3.0 м2, максимальный угол его отклонения уменьшен;
  • масса пустого самолета возросла с 16000 до 17500 кг, максимальная взлетная масса — с 28000 до 30500 кг;
  • при сохранении общего запаса топлива, как на одноместном самолете (9400 кг), введены новые варианты основной и промежуточной заправки;
  • системы, входящие в пилотажно-навигационный комплекс, доработаны с учетом наличия на самолете двойного управления и дублированной системы индикации.

Cамолет построен по нормальной аэродинамической схеме и имеет так называемую интегральную компоновку. Среднерасположенное трапециевидное крыло небольшого удлинения, оснащенное развитыми наплывами, плавно сопрягается с фюзеляжем, образуя единый несущий корпус. Два двухконтурных турбореактивных двигателя с форсажными камерами типа АЛ-31Ф размещены в отдельных мотогондолах, установленных под несущим корпусом самолета на расстоянии друг от друга, позволяющем избежать их аэродинамического взаимовлияния и подвешивать между ними по схеме «тандем» две управляемые ракеты. Сверхзвуковые регулируемые воздухозаборники расположены под центропланом.

Обтекатели шасси плавно переходят в хвостовые балки, служащие платформами для установки цельноповоротных консолей горизонтального оперения с прямой осью вращения, двухкилевого разнесенного по внешним бортам хвостовых балок вертикального оперения и подбалочных гребней.

Самолет спроектирован по концепции «электронной устойчивости» и не имеет традиционной механической проводки управления в продольном канале — вместо нее используется электродистанционная система управления (СДУ). Шасси самолета трехопорное, убирающееся, с одним колесом на каждой опоре.

Фюзеляж самолета интегрально сопрягается с крылом и технологически расчленен на следующие основные части:

  • головную часть фюзеляжа (ГЧФ) с радиопрозрачным обтекателем, створкой ниши передней опоры шасси][rus\pl\su27\gear.txt] и фонарем кабины экипажа;
  • среднюю часть фюзеляжа (СЧФ) с тормозным щитком и створками основных опор шасси;
  • хвостовую часть фюзеляжа (ХЧФ);
  • воздухозаборники.

В головной части фюзеляжа цельнометаллической полумонококовой конструкции, начинающейся радиопрозрачным осесимметричным обтекателем антенны бортовой радиолокационной станции, находится носовой отсек оборудования, в котором размещены блоки радиолокационного прицельного комплекса (РЛПК) и оптико-электронной прицельной системы (ОЭПС), кабина летчика, подкабинные и закабинный отсеки оборудования, ниша уборки передней опоры шасси с одной створкой.

В носовой части обтекателя РЛС установлена штанга основного приемника воздушного давления (ПВД). Рама мотоблока радиолокационной станции вместе с антенной может поворачиваться относительно узлов ее подвески на передней стенке кабины экипажа для обеспечения доступа к блокам ОЭПС.

Для доступа к антенне и мотоблоку РЛС в процессе обслуживания стыковой силовой шпангоут между носовым отсеком и радиопрозрачным обтекателем выполнен наклонным, а радиопрозрачный обтекатель с металлической юбкой — отклоняемым вверх.

Кабина экипажа, выполненная по схеме «тандем», герметизирована и имеет двухсекционный фонарь, состоящий из неподвижного козырька и общей для обоих летчиков открывающейся вверх-назад сбрасываемой части (створки).

Место заднего летчика приподнято относительно переднего, что в сочетании с большой площадью остекления фонаря обеспечивает хороший обзор обоим членам экипажа во все стороны.

Рабочие места летчиков оборудованы катапультируемыми креслами К-36ДМ 2-й серии. Перед фонарем кабины по оси самолета установлен визир оптико-локационной станции, а по бортам фюзеляжа в задней части кабины — аварийные (дублирующие) ПВД.

Вооружение самолета подразделяется на стрелково-пушечное и ракетное. Стрелково-пушечное вооружение представлено встроенной автоматической скорострельной одноствольной пушкой калибра 30 мм типа ГШ-301, установленной в наплыве правой половины крыла, с боекомплектом 150 патронов. Ракетное вооружение размещается на авиационных пусковых устройствах (АПУ) и авиационных катапультных устройствах (АКУ), подвешиваемых на 10 точках: 4 — под консолями крыла, 2 — под законцовками крыла, 2 — под гондолами двигателей и 2 — под центропланом между мотогондолами (по схеме «тандем»).

На самолете может быть подвешено до 6 управляемых ракет «воздух-воздух» средней дальности типа Р-27 с полуактивными радиолокационными (Р-27Р) или тепловыми (Р-27Т) головками самонаведения, а также их модификации с увеличенной дальностью полета (Р-27ЭР, Р-27ЭТ). На четырех подкрыльевых узлах могут быть подвешены управляемые ракеты ближнего маневренного боя с тепловыми головками самонаведения типа Р-73.

Авиамодель Як-3

Авиамодель Як-3

Авиамодель Су-30мки

20 апреля 1994 года в Дели состоялось заседание российско-индийской рабочей группы по сотрудничеству в области авиации. На нем была рассмотрена возможность производства в Индии истребителя Су-30МК После этого переговоры с Индией о закупке самолетов этого типа велись еще два года 30 ноября 1996 года в Иркутске был подписан контракт о поставке в Индию 40 самолетов Су-30К/МК. Контрактом определялись четыре стадии поставок в течение пяти лет, на каждой из которых предполагалось постепенно и поэтапно наращивать боевые возможности самолета.

К середине марта 1997 года в цехах Иркутского авиационного производственного объединения были полностью собраны первые четыре истребителя Су-30К, предназначенные для индийских ВВС Машины отправили в Индию транспортным самолетом Ан-124 «Руслан» в разобранном виде (по два экземпляра) Сборку и облет на месте осуществляли специалисты и пилоты ИАПО Обучение инженерно-технического и летного состава ВВС Индии проводилось в январе-апреле 1997 года на летно-испытательной и доводочной базе ОКБ им Сухого в Жуковском Руководил подготовкой пилотов летчик-испытатель Виктор Пугачев.

В конце марта 1997 года в России побывал с рабочим визитом начальник Главного штаба ВВС Индии Сатиш Кумар Сарина. На ИАПО он ознакомился с организацией производства истребителей Су-30К. 31 марта в Москве состоялась рабочая встреча Главнокомандующего ВВС России генерала армии Петра Дейнекина и Сатиша Кумара Сарины, на которой обсуждались вопросы военно-технического сотрудничества двух стран по линии ВВС. 11 июня на авиабазе индийских военно-воздушных сил Лохегаон вблизи города Пуна (штат Махараштра) состоялась официальная презентация первых восьми индийских Су-30К, которые до этого успешно совершили ряд испытательных полетов. С этой даты самолёты официально приняты на вооружение ВВС Индии. В церемонии презентации приняли участие премьер-министр Индии Шри Гуджал, главнокомандующий ВВС Индии маршал Сатиш Кумар Сарина, посол России в Индии Альберт Чернышев, заместитель Генерального директора ГК «Росвооружение» Олег Сидоренко и бывший Генеральный директор ИАПО Алексей Фёдоров, а также многочисленные приглашенные лица. Выступая на презентации главнокомандующий ВВС Индии отметил, что «…11 июня 1997 года — знаменательный день в истории индийских ВВС». По его мнению «… Су-30К — это совершенный истребитель, полностью отвечающий настоящим и будущим потребностям ВВС».

Расположенная на авиабазе Лохегаон 24-я эскадрилья стала первым подразделением, располагающим этими самолетами.

26 января 1998 года в Индии торжественно отметили национальный праздник -День Республики. По установившейся традиции в самом центре Дели состоялся военный парад, в котором впервые приняли участие самолеты Су-30К индийских ВВС. Они привлекли всеобщее внимание исполнением над городом фигур высшего пилотажа.

Заключенный контракт предусматривал, что самолеты Су-30К первых партий будут представлять собой серийные Су-30 с незначительными изменениями в навигационной системе и оборудовании. К 2000-му году планировалось перейти на уровень машины фактически нового поколения — Су-30МКИ (И — индийский). Возможности этого истребителя должны были уже существенно отличаться от базового Су-30К. Его предполагалось оснастить передним горизонтальным оперением и двигателями АЛ-31ФП с управляемым вектором тяги, которые позволили бы существенно улучшить маневрирование на малых скоростях полета, а также совершенно новым бортовым оборудованием, благодаря которому он мог бы уничтожать воздушные, наземные и морские цели. Более поздние этапы контракта предусматривали доработку самолетов Су-30К первых партий до уровня последней (Су-30МКИ).

По контракту не исключалась возможность и международной кооперации в части поставки бортового радиоэлектронного оборудования (БРЭО) и его интеграции в состав комплекса. Индия должна была не просто получить готовые самолёты, но и принять практическое участие в опытно-конструкторской разработке бортовых систем и комплекса БРЭО Су-30МКИ. Естественно, что вся ответственность за создание «интернационального» бортового оборудования и соответствие его характеристик требованиям контракта осталась лежать на специалистах ОКБ Сухого. При создании Су-30МКИ использовалась отработанная и хорошо зарекомендовавшая себя система взаимодействия с традиционными российскими разработчиками и поставщиками комплектующих изделий при участии специалистов ВВС

Таким образом, на Су-30МКИ для повышения маневренности и боевой эффективности предусматривалась установка:

  • новой силовой установки на основе двух двухконтурных форсированных турбореактивных двигателей АЛ-31ФП с управляемым вектором тяги (УВТ):
  • автоматически отклоняемого дестабилизатора (ПГО);
  • универсальной РЛС, способной обнаруживать и сопровождать до 15 воздушных целей и четыре из них одновременно атаковать, а также обнаруживать цели на поверхности земли или моря;
  • системы индикации на многофункциональных жидкокристаллических цветных дисплеях с большой разрешающей способностью;
  • нового оптико-электронного многофункционального прицельно-навигационного комплекса на базе современных ЭВМ, с инерциальной навигационной системой на лазерных гироскопах и с системой спутниковой навигации (GPS);
  • принципиально новой системы объективного контроля с фиксированием не только рабочих параметров систем самолёта, но и внешней тактической обстановки.

Для поражения воздушных целей на Су-30МКИ предполагалось применять ракеты со всеракурсными радиолокационными и инфракрасными головками самонаведения, для ударов по наземным и морским целям использовать противорадиолокационные ракеты, ракеты и корректируемые авиационные бомбы с телевизионными головками самонаведения, а также обширный арсенал неуправляемых средств поражения. Модернизация Су-30К должна была вестись по мере выполнения контракта, но работа по новой модификации началась в ОКБ Сухого ещё за год до его подписания. Средства, полученные в виде предварительной оплаты, направлялись (и направляются в настоящее время) на финансирование опытно-конструкторских работ в ОКБ Сухого, в НПО «Люлька-Сатурн», а также на подготовку производства индийской модификации в Иркутске.

Весной 1997 года на опытном заводе ОКБ Сухого завершили переделку одного из серийных самолетов Су-30 (с синим бортовым номером «56») в первый опытный истребитель Су-30МКИ (машина имела заводской шифр Т-10ПМК-1). На килях самолета нанесли небольшую надпись — «Су-30МК» (на первом этапе испытаний первоначальный бортовой номер сохранялся, но впоследствии его заменили на синий «01») Внешне самолет отличался от серийных Су-30 наличием переднего горизонтального оперения и двигателей с отклоняемым вектором тяги Изменилась система управления соплами, которая работала не от гидравлической, а от топливной системы. 23 апреля истребитель доставили на лётно-испытательную базу ОКБ в Жуковском, где в мае начались его наземные испытания 1 июля 1997 года летчик-испытатель ОКБ Вячеслав Аверьянов совершил на нем первый, пятидесятиминутный полет.

На первом прототипе Су-30МКИ установили предсерийные двигатели АЛ-31ФП с управляемым вектором тяги, которые в процессе подготовки к первому полету прошли длительные специальные испытания. Как и на Су-37, сопла двигателей Су-30МКИ отклонялись в пределах 15° вверх и вниз, но отличались тем, что плоскость поворота каждого сопла была отклонена на 32′ во внешнюю сторону от плоскости симметрии самолета Таким образом, при дифференциальном отклонении сопел улучшалась и боковая управляемость истребителя на околонулевых скоростях полета.

В 1998 году второй прототип Су-30 (опытный Т-10ПУ-6 с синим бортовым номером «06») был переделан во второй летный Су-30МКИ (заводской шифр Т-10ПМК-6), который совершил первый вылет 23 марта того же года.

В ноябре 1998 года Су-30МКИ (борт «01») экспонировался на авиационной выставке «Аэро-Индия 98» в Бангалоре В июне 1999 года машина прибыла в Париж на аэродром в Ле Бурже для участия в очередном самом престижном международном авиасалоне Специалисты и зрители с нетерпением ожидали выступления Вячеслава Аверьянова, который после прилета выполнил три тренировочных полета, в результате которых самолет был допущен к участию в летной программе салона Летчик-испытатель 1-го класса Аверьянов — опытный пилот. Он принимал участие в испытании самолетов Су-27К и Су-35 Как упомянуто ранее, он поднимал в первый полет Су-30МКИ и в полном объеме проводил его испытания До перелета в Париж на двух опытных самолетах Су-30МКИ в общей сложности было выполнено более 140 полетов (в основном по программе исследования аэродинамики, прочности, системы дистанционного управления с отклонением вектора тяги и других самолетных систем) Параллельно выполнялась программа по комплексу высшего пилотажа с режимами сверхманевренности 12 июня при выполнении демонстрационного полета накануне открытия салона опытный самолет управляемый экипажем в составе летчика-испытателя В Ю Аверьянова и штурмана-испытателя В Г Шендрика, потерпел аварию, но пилоты благополучно катапультировались Окончательное заключение комиссии по расследованию причин аварии опубликовано не было, но многим специалистам уже в период проведения авиасалона стало ясно, что причиной аварии явилась ошибка пилота Тем не менее как показали дальнейшие события авария первого прототипа Су-30МКИ в Ле Бурже не сказалась негативно ни на взаимоотношениях с индийскими партнерами ни на дальнейшей судьбе самолета Более того, в августе того же года в процессе проведения демонстрационных полетов Су-30МКИ на авиасалоне МАКС-99 Вячеслав Аверьянов практически ежедневно ошеломлял присутствовавших зрителей и специалистов каскадом невероятных фигур, тем самым реабилитировав не только самолет, но и себя.

Согласно контракту с индийской стороной поставленные Су-30К должны будут в два этапа дорабатываться под стандарт Су-30МКИ. На первом этапе модернизации предполагается установка ПГО и нового оборудования, на втором этапе — двигателей АЛ-31ФП с управляемым вектором тяги, которые в настоящее время уже доведены до стадии позволяющей без каких либо проблем при необходимости устанавливать их на обычные серийные Су-27. Предполагалось также что на истребитель будет устанавливаться российская система управления вооружением основу которой составит новая много функциональная радиолокационная станция Н011М «Барс» с фазированной антенной решеткой. БРЛС Н-011М «Барс» с ПФАР Х-диапазона в режиме «воздух-воздух» обеспечивает сопровождение до 15 целей на проходе, точное сопровождение до 4-х целей для обеспечения применения оружия без прекращения поиска. В режиме «воздух-поверхность» БРЛС обеспечивает картографирование реальным лучом, картографирование с доплеровским сужением луча, картографирование с синтезированной апертурой, селекцию наземных движущихся целей, сопровождение до двух наземных целей. Дальность захвата цели типа «истребитель»: в ППС — 120-140 км, в ЗПС — 60 км. Дальность обнаружения в режиме «воздух-поверхность» не менее: железнодорожный мост — 80-120 км, группа танков — 40-50 км, эсминец — 120-150 км.

На Уральском оптико-механическом заводе (УОМЗ) в Екатеринбурге специально для Су-30МКИ создана новая оптико-локационная станция ОЛС-30 которая предназначена для поиска и сопровождения воздушных целей в ИК диапазоне, определения координат и измерения дальности как до воздушных, так и до наземных целей Она имеет два канала (с теплопеленгатором и лазерным дальномером), снабжена виброустойчивым приемником микрокриогенной системой охлаждения с увеличенным ресурсом, для нее разработано новое математическое обеспечение Диапазон углов обзора станции по азимуту — 60е, по углу места — 60° вверх и 15° вниз, а ее масса составляет 182 кг.

Третий по счету, уже предсерийный Су-30МКИ с синим бортовым номером «05» оснащенный полным комплектом бортового оборудования, был в очередной раз с успехом продемонстрирован на авиасалоне «Аэро-Индия-2001», проходившем с 7 по 11 февраля 2001 года на авиабазе близ индийского города Бангалор Летчик-испытатель Вячеслав Аверьянов ежедневно восхищал индийских зрителей, специалистов и военных возможностями этой машины Решивший лично опробовать самолет в воздухе главнокомандующий ВВС Индии маршал авиации Анил Типнис после завершения ознакомительного полета с Аверьяновым остался в полном восторге заявив «Су-30МКИ — превосходный самолет! Ничего подобного в своей жизни я не видел!» При выполнении маршалом некоторых фигур перегрузка достигала 7 единиц В Индии по лицензии планируется построить 140 машин этого типа Предполагаются четыре этапа развертывания лицензионного производства Первый Су ЗОМКИ построенный в Индии из комплектующих российского производства, взлетит в 2004 году (в этом году намечено выпустить три машины) В 2005 году планируется построить шесть машин, в 2006-м — восемь, после чего ежегодно завод в Насике будет строить по 10 самолетов При этом все комплектующие будут уже производиться на индийских предприятиях планер — в Насике двигатель — в Корапуте РЛС и бортовая радиоэлектроника — в Хайдарабаде авионика в Корве а гидро- и пневмооборудование — в Лакнау Для ускорения и облегчения сервисного технического обслуживания индийских Су-30МКИ российская сторона совместно с корпорацией HAL создаст консигнационныи склад, который обеспечит поставку запасных частей индийским ВВС в срок, не превышающий два-три дня Контракт на сумму в 3,3 миллиарда долларов предусматривает также возможность дальнейшей модернизации самолета, но толь ко после запуска лицензионной программы на территории заказчика.

Авиамодель Cу-27

Разрабатывавшийся первоначально как «чистый» истребитель-перехватчик, Су-27 во второй половине 70-х гг. решено было дооснастить авиационными средствами поражения наземных целей — стандартными для ВВС авиабомбами калибра 100,250 и 500 кг, зажигательными баками и неуправляемыми ракетами калибра 57,80 и 240 мм. При этом максимальная бомбовая нагрузка у Су-27 могла доходить до 8 т, в то время как у МиГ-29 — всего до 2-3 т. Правда, неуправляемое оружие «воздух-поверхность» на первых модификациях Су-27 так и не прижилось, а в конце 80-х гг., в соответствии с обязательствами СССР по Договору по ограничению вооруженных сил в Европе, серийные самолеты, принципиально имевшие техническую возможность применения такого оружия, были ее лишены (путем демонтажа соответствующих блоков системы управления оружием и электропроводки управления сбросом бомб и пуском НАР).

Стоит отметить, что создание СУВ нового поколения стало одной из наиболее сложных задач в процессе разработки истребителей 4-го поколения. Имевшаяся информация о самолетах F-15 и F-16 подтверждала, что отечественные истребители отставали от зарубежных аналогов прежде всего в техническом уровне оборудования — особенно в радиолокационной, электронной и бортовой вычислительной аппаратуре. Поэтому возникала объективная необходимостью срочного выполнения ряда научно-исследовательских и опытно-конструкторских работ прежде всего в области построения бортовых РЛС, цифровых вычислительных систем, комплексов информационного обмена, информационно-управляющего поля кабины летчика и комплексирования бортового радиоэлектронного оборудования (БРЭО).

Особенно остро стояла проблема создания бортовой цифровой вычислительной техники, пригодной для использования на перспективных истребителях, разработки методов и средств подготовки программного обеспечения и формирования каналов информационного обмена. Первые исследования в области «цифризации» БРЭО летательных аппаратов были развернуты в СССР еще в конце 60-х гг. В них участвовало несколько предприятий авиационной, радиотехнической, оборонной и электронной промышленности: НИИАС, ЛИИ, ЛНПО «Электроавтоматика», НПО «Фазотрон», НПО «Ленинец», НИИЦЭВТ, МНИИП (НПО «Вега»). В начале 70-х гг. в серийное производство была запущена первая бортовая цифровая вычислительная машина — «Орбита-10», которая была спроектирована в ЛНПО «Электроавтоматика» и использовалась в навигационной системе «Пеленг» высотного разведчика МиГ-25Р, прицельно-навигационном комплексе ПpHK-23 истребителя-бомбардировщика МиГ-23БМ (МиГ-27), прицельно-навигационной системе «Пума» фронтового бомбардировщика Су-24 и навигационном комплексе НК-45 бомбардировщика-ракетоносца Ту-22М. Нетрудно заметить, что среди перечисленных самолетов нет ни одного истребителя: в связи с особенностями назначения и использования авиационных комплексов истребительной авиации, в первую очередь, многофункциональностью и высокой динамикой процессов боевого применения, внедрение цифровой техники в сосгав их БРЭО имело ряд серьезных проблем и началось только с машин 4-го поколения — Су-27 и МиГ-29. Уже в ходе создания последних выявилась необходимость организации нескольких специальных научно-исследовательских работ в этой области.

Комплексная система управления вооружением обоих истребителей строилась по схожим принципам и впервые в мире включала два взаимно дополняющих друг друга обзорно-прицельных канала (радиолокационный прицельный комплекс и оптико-электронную прицельную систему) с автономными цифровыми вычислителями, а также систему единой индикации (СЕИ), систему управления оружием (СУО), блоки сопряжения и коммутации. При этом прицельное оборудование, разрабатывавшееся для Су-27, отличалось более высокими характеристиками. Разработка радиолокационного прицельного комплекса РЛПК-27 для самолета Су-27 и системы управления вооружением С-27 в целом была задана НИИ приборостроения (НИИП, г. Жуковский), а РЛПК-29 для самолета МиГ-29 — НИИ радиостроения (НИИР, г. Москва). Оба института входили в то время в состав Научно-конструкторского объединения (НКО) «Фазотрон» (Генеральный конструктор Ю.Н.Фигуровский, первый заместитель Генерального конструктора В.К.Гришин). Создание оптико-электронных прицельных систем ОЭПС-27 и ОЭПС-29 для обоих самолетов было поручено московскому ЦКБ «Геофизика» (главный конструктор Д.М.Хорол).

Постановлением правительства 1976 г. предусматривалось оснащение самолета Су-27 бортовой радиолокационной станцией, превосходящей по характеристикам РЛС AN/APG-63 самолета F-15A. Американский радиолокатор стал первой в мире БРЛС импульсно-доплеровского типа с полностью цифровой обработкой информации. Он оснащался щелевой антенной с гидроприводом, обеспечивающей обзор пространства в диапазоне +60° по азимуту и углу места. Использование нескольких режимов излучения позволяло РЛС обнаруживать воздушные цели с эффективной отражающей поверхностью (ЭОП) 3 м- па фоне земли на встречных курсах на дальности 80-100 км (в режиме квазинепрерывного излучения с высокой частотой повторения импульсов) и на догонных курсах на дальности 40-50 км (в режиме квазинепрерывного излучения со средней частотой повторения импульсов и сжатием импульсов на базе фазово-кодовой модуляции), а также осуществлять сопровождение па проходе до 10 целей с захватом и последующим сопровождением одной из них с организацией ее непрерывного подсвета для наведения ракеты с полуактивной радиолокационной головкой самонаведения. Очевидно, что все эти возможности должна была иметь и отечественная РЛС для самолета Су-27, получившая название «Меч».

Для обеспечения превосходства РЛС «Меч» над APG-63 ее решено было оснастить оригинальной фазированно-щелевой антенной, реализующей механическое сканирование в горизонтальной плоскости и электронное управление лучом в вертикальной плоскости. Таким образом, в азимутальной плоскости она работала как щелевая, а в угломестной — как ФАР. Электронное перемещение луча в вертикальной плоскости позволяло в режиме обзора при горизонталыном механическом сканировании луча практически мгновенно направлять его на ранее обнаруженные цели. Это обеспечивало при многострочном обзоре регулярное, в 2-3 раза более частое, чем при механическом сканировании, обращение антенны к рапсе обнаруженным целям. Таким образом радикально решался вопрос повышения точности прогнозирования положения цели в режиме сопровождения на проходе, что, в свою очередь, позволяло рассматривать вопрос одновременного обстрела нескольких (по крайней мере двух) целей с их непрерывно-дискретным подсветом (что в то время было невозможно для самолета F-15, оснащенного РЛС с чисто механическим сканированием и ракетами с полуактивными радиолокационными головками самонаведения).

Несмотря па то, что РЛС для самолета МиГ-29, получившую название «Рубин», предполагалось оснастить традиционной двухзеркальной антенной Кассегрейна с механическим сканированием в обеих плоскостях, в результате предварительной проработки обеих РЛС было установлено, что возможна унификация их основных блоков. Это могло дать серьезный выигрыш в стоимости и сроках разработки, а также трудоемкости последующего серийного производства. В 1978 г. было принято решение о создании унифицированной системы, главным конструктором которой был назначен Виктор Константинович Гришин (одновременно он стал Генеральным директором и Генеральным конструктором НКО «Фазотрон»). Главным конструктором С-27 назначили Т.О.Бекирбаева (НИИП), а главным конструктором С-29 — Ю.П.Кирпичева (НИИР). Разработка блоков дня унифицированной системы была поделена между двумя институтами. Коллективу НИИП была поручена разработка задающего устройства передатчика, устройств ввода-вывода, сопряжения с ракетами, БЦВМ, цифровых датчиков «вал-код» и бортовой части системы объективного контроля, а коллективу НИИР -высокочастотного и низкочастотного приемников, выходной ступени передатчика, наземной части системы объективного контроля и системы встроенного контроля. Таким образом, степень унификации С-27 и С-29 достигала 70%. Остальные блоки, а также программное обеспечение каждое предприятие разрабатывало самостоятельно.

Нa всю работу отводилось 2.5 года, и задача в целом была выполнена. Забегая вперед, следует сказать, что степень унификации обеих систем оказалась даже более высокой, чем планировалось: в 1982 г. по ряду причин от щелевой антенны РЛС «Меч» пришлось отказаться, и в серию самолеты Су-27 пошли с антеннами Кассегрейна, подобными применяемым в РЛС истребителя МиГ-29, но с другими характеристиками. Но об этом драматическом моменте в судьбе Су-27 — чуть позже.

Разрабатывавшиеся в ЦКБ «Геофизика» под руководством главного конструктора Давида Моисеевича Хорола оптико-электронные прицельные системы ОЭПС-27 и ОЭПС-29 для самолетов Су-27 и МиГ-29 были аналогичны по назначению и конструкции, разница заключалась лишь в более высоких характеристиках ОЭПС-27 по дальности действия и применении в ней более широкополосного чувствительного элемента. ОЭПС-27 предназначалась для поиска, обнаружения и сопровождения воздушных целей по их инфракрасному излучению, определения координат линии визирования при работе летчика по визуально видимым целям, измерения дальности и решения задач прицеливания по воздушным и наземным целям. Первоначально в состав ОЭПС-27 планировалось включить оптико-локационную станцию ОЛС-27 (состояла из обзорно-следящего теплопеленгатора и лазерного дальномера) и специализированный цифровой вычислитель. В дальнейшем в состав ОЭПС-27 дополнительно ввели нашлемную систему целеуказания (НСЦ).

Теплопеленгатор ОЛС-27 предназначался для ведения автономного поиска воздушных целей в поле обзора размером 60° по азимуту и 12° по углу места, обнаружения в простых метеоусловиях на средних высотах цели типа «истребитель» при работе его двигателей на режиме «максимал» на дальности до 50 км, автоматического захвата на сопровождение обнаруженной цели в зоне 3×3° на дальности не менее 70% от дальности обнаружения, автоматического сопровождения воздушной цели при угловой скорости линии визирования до 25°/с. Входящий в комплект ОЛС-27 лазерный дальномер предназначался для прецизионного измерения дальности до цели, сопровождаемой теплопеленгатором. Обзор пространства ОЛС-27 должен был осуществляться с помощью качания в двух взаимно перпендикулярных плоскостях закрепленного па кардановом подвесе зеркала. Это зеркало в режиме автосопровождения являлось исполнительным элементом следящей системы, которая обеспечивала бы непрерывное совмещение оптической оси теплопеленгатора и лазерного дальномера с направлением на цель.

Введение в СУВ С-27 аппаратуры, работающей в диапазоне оптических и инфракрасных длин волн должно было обеспечить скрытность обнаружения цели, увеличение точности измерения координат по углу и по дальности и позволяло бы дублировать в основных режимах работу БРЛС. После получения информации о целях, находящихся в поле обзора, должен был осуществляться выбор атакуемой цели, ее захват и сопровождение с выдачей координат в головки самонаведения ракет. В процессе организации боя ОЭПС-27 должна была выдавать необходимую информацию для управления самолетом и пуска ракет.

Основные требования к перспективным управляемым ракетам для истребителей 4-го поколения были сформулированы к 1973 г., а их полномасштабное проектирование было задано Постановлением ЦК КПСС и Совета Министров СССР, вышедшим в 1974 г. В формировании концепции новых ракет «воздух-воздух» и дальнейшем сопровождении работ по их созданию активное участие принимали специалисты НИИАС МАП, в первую очередь, Р.Д.Кузьминский, В.Ф.Левитин и А.Н.Давыдов. Проектирование ракеты средней дальности, получившей название К-27, велось на конкурсной основе МЗ «Вымпел» и МЗ «Молния» (ПКПК). Особенностью УР должен был стать модульный принцип ее построения, благодаря которому на базе единой конструкции создавалось семейство ракет с различными системами наведения (с ПАРГС, ТГС, активной и пассивной радиолокационными головками самонаведения) и двумя вариантами двигательных установок (ДУ): базовой, обеспечивающей дальность пуска до 70-80 км, и ДУ с повышенной энергетикой, обеспечивающей дальность пуска до 120-130 км. Ракеты с базовой ДУ (первоначальное наименование К-27А) стартовой массой до 250 кг предназначались, в первую очередь, для легкого истребителя МиГ-29, а «энергетические» ракеты (К-27Б) массой около 350 кг — для многоцелевого Су-27, предполагалась также возможность применения новых ракет на серийных истребителях МиГ-23МЛ и Су-15ТМ. По характеристикам К-27 должна была превосходить появившуюся в 1975 г. новую американскую ракету AIM-7F «Спарроу». После рассмотрения предъявленных на конкурс технических предложений обоих коллективов предпочтение было отдано разработке МЗ «Вымпел» (главный конструктор А.Л.Ляпин).

В эскизном проекте К-27 была представлена в двух вариантах: нормальной аэродинамической схемы и схемы «утка» с развитыми по площади рулями, имеющими обратную стреловидность по передней кромке. По рекомендации ЦАГИ был выбран второй вариант. Ракета предлагалась сразу в 4 модификациях: «базовых» К-27Р и К-27Т с ПАРГС и ТГС соответственно и «энергетических» К-27ЭР и К-27ЭТ. Коренным отличием системы наведения УР от всех других существовавших в то время как в СССР, так и за рубежом, стала реализация в ней режима инерциального управления с радиокоррекцией по сигналам БРЛС самолета-носителя на первом этапе полета ракеты, предшествующем участку самонаведения, благодаря чему значительно увеличилась эффективная дальность пуска. С созданием ракет К-27 и К-27Э удалось добиться значительного превосходства отечественных истребителей над самолетами вероятного противника, вооруженными УР AIM-7F «Спарроу» (F-15 и F/A-18): наличие модульных систем наведения с ПАРГС и ТГС обеспечивало тактическую гибкость в применении оружия в зависимости от боевых условий и затрудняло противнику выбор средств противодействия; увеличение дальности пуска за счет использования корректируемого инерциального режима наведения делало возможным опережение по моменту пуска ракет и начала выполнения маневра тактического отворота, модульность по ДУ позволяла иметь легкую модификацию К-27, равную по баллистическим возможностям ракете AIM-7F, и энерговооруженную модификацию К-27Э, значительно превосходившую AIM-7F по средней скорости и дальности полета. В 1984-1987 гг. семейство УР, получивших названия Р-27Р, Р-27Т, Р-27ЭР и Р-27ЭТ, было принято на вооружение. Значительную роль в их создании сыграл ГАСоколовский, возглавивший в 1981 г. МКБ «Вымпел».

Создание новых РМД и РБВБ с дальностью пуска 12-20 км велось с 1973 т. коллективами МЗ «Вымпел» и МЗ «Молния». Первый проектировал ракету малой дальности К-14, являвшуюся глубокой модификацией ракет К-13М и К-13М1 в направлении оснащения всеракурсной ТГС «Радуга» и повышения располагаемых перегрузок, второй — малогабаритную высокоманевренную бескрылую ракету ближнего воздушного боя К-73 с газодинамическим управлением и ТГС ограниченной ракурсности, развивавшую концепцию легкой (масса 45 кг) РБВБ К-бО. К середине 70-х гг. исследования тактики ближнего маневренного боя истребителей и анализ зарубежного опыта создания новых РМД и РБВБ показали, что перспективная ракета ближнего маневренного воздушного боя обязательно должна оснащаться всеракурсной ТГС. В связи с этим МЗ «Молния» было предложено доработать проект К-73 под головку самонаведения такого типа — широкоугольную ТГС «Маяк», создаваемую киевским заводом «Арсенал» (главный конструктор А.В.Молодых). Большие габариты и масса всеракурсной ТГС привели к увеличению размерности ракеты, при сохранении бескрылой схемы с чисто газодинамическим управлением. Однако в 1976 г. проект К-73 пришлось еще раз коренным образом переработать: было установлено, что ракета принятой схемы имела ряд серьезных недостатков, в первую очередь, недостаточную маневренность и малое время управляемого полета. В связи с этим решено было вернуться к традиционной схеме с крылом, а управление сделать комбинированным аэрогазодинамическим (учитывался и анализ материалов по аналогичной американской бескрылой ракете «Эджайл» с газодинамическим управлением, разработка которой была прекращена по тем же причинам), в результате чего масса УР возросла до 105 кг.

Так, в три этапа, сложился облик К-73, ставшей первой в новом классе ракет ближнего высокоманевренного воздушного боя, пришедших на смену РБВБ типа Р-60 и РМД типа Р-1ЗМ. Принятая на вооружение в 1985 г., Р-73 по сей день не имеет аналогов среди зарубежных РМД по маневренности и боевой эффективности. Проектирование ракеты на МЗ «Молния» велось под руководством главного конструктора М.Р.Бисновата, после его смерти в 1977 г. тематика УР в образованном в 1976 г. НПО «Молния» (главный конструктор и Генеральный директор Г.Е.Лозино-Лозинский) возглавлялась Г.И.Хохловым, а в 1982 г. была полностью передана на МЗ «Вымпел», куда перевели группу специалистов — «ракетчиков» из НПО «Молния». Доводка ракеты К-73 и создание ее последующих модификаций осуществлялись в ГосМКБ «Вымпел» под руководством главного (а затем Генерального) конструктора ГАСоколовского.

Что касается РМД К-14, разрабатывавшейся одновременно с К-73, то к 1976 г., когда были выпущены эскизные проекты по обеим ракетам, стало ясно, что по назначению и тактико-техническим характеристикам она фактически дублирует изделие НПО «Молния»; близкими были и массогабаритные параметры. Основные преимущества К-14 заключались в более простой конструкции (управление было аэродинамическим, а для расширения диапазона располагаемых перегрузок применялось оригинальное устройство, названное флюгирующим рулем) и высокой степени ее преемственности по отношению к серийным РМД Р-ЗС, Р-13М и Р-13М1, что могло позволить с минимальными доработками носителей применять ее на самолетах МиГ-21, МиГ-23, МиГ-27, Як-28П, Су-22 и др. В связи с этим долгое время работы по К-14 и К-73 велись параллельно, окончательный выбор в пользу последней был сделан только в конце 70-х гг., когда было признано, что применявшаяся на К-14 так называемая «безавтопилотная» система управления (в ней реализовывалась обратная связь по шарнирному моменту. а не по перегрузке), унаследованная еще от Р-ЗС образца 1960 г., не имеет будущего на перспективных ракетах ближнего высокоманевренного воздушного боя. Полностью же переделывать систему управления ракеты, как предлагали разработчику специалисты НИИАС, МЗ «Вымпел» не рискнул (предприятие в это время было загружено работами по другим УР «воздух-воздух» — К-24, К-27, К-33 и т.д.).

Двухствольная автоматическая пушка АО-17А (9А623), спроектированная в тульском КБ приборостроения (главный конструктор А.Г.Шипунов) по схеме пушки ГШ-23 под патрон АО-18 калибра 30 мм, имела темп стрельбы 3000 выстрелов в минуту, начальную скорость снаряда 850 м/с и массу около 100 кг. К 1976 г. АО-17А успешно прошла наземные государственные испытания, однако от применения ее на истребителях Су-27 и МиГ-29 позднее отказались. В 1976 г. КБП вышло с предложением о создании вдвое более легкой (массой 50 кг) одноствольной пушки ТКБ-687 (9А4071) под тот же 30-мм патрон АО-18 со скорострельностью 1500-1800 выстрелов в минуту и начальной скоростью снаряда 850-900 м/с. В следующем году был построен ее макетный образец, а в 1983 г. эта пушка под названием ГШ-301 была принята на вооружение истребителей Су-27 и МиГ-29 (пушку же АО-17А (ГШ-30) решено было использовать на самолетах-штурмовиках Су-25 и вертолетах огневой поддержки Ми-24П, на вооружении которых она состоит с 1982 г.).

ПЕРВЫЕ ПОЛЕТЫ

Основной объем проектных работ по самолету Су-27 был в целом завершен к середине 70-х гг. В 1975 г. начался выпуск рабочих чертежей, и вскоре та МЗ «Кулон» приступили к изготовлению первых опытных экземпляров самолета. К сожалению, Павел Осипович Сухой не дождался появления на свет нового истребителя: он умер 15 сентября 1975 г., а ОКБ, получившее его имя, возглавил первый заместитель Сухого Евгений Алексеевич Иванов (в течение двух лет он был исполняющим обязанности Генерального конструктора и только в конце 1977 г. был утвержден на эту должность официально). Вскоре сменился и руководитель темы Су-27: в связи с болезнью Н.С.Чернякова главным конструктором самолета в феврале 1976 г. был назначен Михаил Петрович Симонов. Под его непосредственным руководством вплоть до конца 1979 г., когда Симонов перешел па работу в Министерство авиационной промышленности СССР, и осуществлялись все работы по постройке опытных экземпляров Т-10, проведению их летных испытаний и проектированию модификаций самолета.

Сборка первого опытного образца Су-27 — самолета Т-101 -была завершена в начале 1977 г., и он был перебазирован на летную станцию ОКБ на аэродроме ЛИИ в Жуковском. Как уже говорилось выше, предусмотренные проектом двухконтурные турбореактивные двигатели нового поколения АЛ-31Ф к этому времени готовы еще не были, и первые Т-10 решили оснастить двигателями АЛ-21Ф-ЗАИ, являющимися модификацией серийных ТРДФ АЛ-21Ф-3, которые широко применялись на других самолетах фирмы (Су-17М, Су-17М2, Су-17МЗ, Су-17УМ, Су-20, Су-24). Установка АЛ-21Ф-3 — пусть менее мощных, менее экономичных и более тяжелых по сравнению со штатными АЛ-31Ф, зато уже освоенных в производстве и эксплуатации, -позволяла начать испытания Су-27 уже в 1977 г., в то время как первые работоспособные АЛ-31Ф могли появиться только в 1978-1979 гг. На самолетах с АЛ-21Ф-3 можно было отработать в условиях реальных летных испытаний аэродинамику новой компоновочной схемы, определить основные характеристики устойчивости и управляемости, некоторые летные данные, осуществить доводку нового комплекса бортового оборудования и вооружения. Тем самым, не дожидаясь получения первых летных экземпляров штатного двигателя, планировалось провести значительный объем испытаний по программе, а следовательно, ускорить сроки принятия самолета на вооружение.

Ведущим летчиком-испытателем Т-101 был назначен шеф-пилот МЗ им. ПО.Сухого Герой Советского Союза Заслуженный летчик-испытатель СССР генерал-майор авиации Владимир Сергеевич Ильюшин. Подготовка самолета к испытаниям осуществлялась под руководством ведущего инженера Рафаила Григорьевича Ярмаркова, в бригаду испытателей входили также инженеры H.П.Иваном и Н.Ф.Никитин (впоследствии — главный Koнструктор самолета Су-27М, а сейчас — Генеральный конструктор и Генеральный директор ВПК «МАПО). После проведения необходимых наземных проверок п выполнения скоростных рулежек было получено разрешение методического совета ЛИИ на первый вылет, а 20 мая 1977 г. В.С.Ильюшин поднял Т-101 в воздух. Первый полет Т-101. получившего бортовой № 10, прошел успешно. В дальнейшем этот экземпляр использовался для определения характеристик устойчивости и управляемости, а также доводки системы управления нового истребителя. Система управления вооружением на нет не устанавливалась. В течение первых 8 месяцев испытаний на Т-101 было выполнено 38 полетов. После перехода Р.Г.Ярмаркова нa другой самолет ведущим инженером по испытаниям Т-101 был назначен Н.Ф. Никитин. В 1985 т.. когда все задачи, поставленные перед 110-1, были выполнены, самолет передан в Музей ВВС в подмосковном Moнино.

В 1978 г. в опытном производстве МЗ им. П.О.Сухого был построен второй опытный самолет (Т-102). Его летные испытания проводил летчик-испытатель ОКЬ Евгений Степанович Соловьев. ведущим инженером был Марк Беленький, К сожалению, летать этом} экземпляру довелось недолго: 7 июля 1978 г. он потерпел катастрофу, в которой погиб Е.С.Соловьев.

Причиной происшествия стало разрушение самолета в воздухе из-за непреднамеренного выводи его на перегрузку, превышающую максимально допустимую. В соответствии с поставленным заданием, летчик проводил испытания по подбору оптимальных передаточных отношений системы дистанционного управления истребителя. Аналогичные исследования до этого проводил и В.С.Илыошинна Т-101, при этом обоими летчиками уже было оценено функционирование системы па больших и средних высотах. Соловьеву же предстояло пойти дальше и получить характеристики управляемости на высоте 1000 м и скорости 1000 км/ч.

Выполнение двух «площадок» на высотах 11 и 5 км с оценкой работы СДУ проблем не вызвало. Соловьев снизился до 1000 м. И вот тут реакция самолета на взятие ручки «на себя» оказалась непредвиденной. Перегрузка значительно превзошла ожидаемую. Рефлекторным движением ручки «от себя» летчик попытался выровнять самолет, но при этом создалась отрицательная перегрузка в 8 единиц. Еще одно взятие ручки — и перегрузка превысила разрушающую. Расшифрованные после катастрофы пленки системы объективного контроля свидетельствовали о том, что Т-102 попал в неисследованную до этого область резонансных режимов с «раскачкой» самолета в продольном канале с возрастающими амплитудами. Развитие аварийной ситуации было таким скоротечным, что опытнейший пилот, Заслуженный летчик-испытатель СССР Герой Советского Союза Е.С.Соловьев, давший путевку в небо не одному самолету «Су», даже не успел прибегнуть к использованию средств спасения. Анализ обстоятельств катастрофы позволил установить истинную причину трагедии и внести необходимые изменения в настройку системы дистанционного управления.

В том же 1978 г. на Дальневосточном машиностроительном заводе им. Ю.А.Гагарина в Комсомольске-на-Амуре приступили к подготовке выпуска установочной партии Су-27 с двигателями АЛ-21Ф-ЗАИ. Одновременно здесь пелась постройка двух опытных экземпляров Г-Н), на которые впервые планировалось установить двигатели АЛ-31Ф. Эти дне машины получили названия Т-103 и Т-104. Окончательную сборку и дооборудование самолетов предполагалось осуществить в опытном производстве МЗ им. Сухого в Москве. Постройка Т-103 (серийный № 01-01) на комсомольском заводе завершилась в августе 1978 г. и в конце тогоже месяца, после отстыковки от него консолей крыла и оперения, на специальном транспортном приспособлении в кабине грузового самолета Ан-22 «Антей» он был доставлен на аэродром ЛИИ в Жуковском, а затем перевезен па МЗ им. П.О.Сухого. Поставку первых летных экземпляров двигателей АЛ-31Ф пришлось ждать еще несколько месяцев. Наконец, в марте 1979 г. сборка Т-103 завершилась, и самолет был перебазирован на летную станцию ОКБ в Жуковском.

Под руководством ведущею инженера по летным испытаниям В.П.Иванова были проведены необходимые наземные проверки, и В.С.Ильюшин выполнил на Т-103 первые рулежки. Однако методический совет ЛИИ. возглавляемый начальником института В.В.Уткиным, не спешил с выдачей заключения на первый вылет: слишком много полетных ограничений имели первые экземпляры нового двигателя И результате было решено снять двигатели с самолета и отправить их на доработку на МЗ «Сатурн». (Специалистам ОКБ A.M.JIюльки удалось в короткие сроки выполнить необходимые работы, и большинство ограничений с первых АЛ-31Ф было снято. Наконец. 23 августа 1979 т. В.С.Ильюшин поднял Т-103 в первый полет. Через месяц на испытания поступил и ‘ПО-4 (серийный № 01-02), на который затем впервые установили бортовую радиолокационную станцию «Меч» (в первом ее варианте со щелевой антенной). Первый полет на Т-104 был выполнен 31 октября I979 г. Обе машины поначалу использовались для летной отработки новых двигателей. Затем Т-103 был доработан для исследований на учебно-тренировочном комплексе «Нитка» в интересах создания корабельной модификации Су-27, а па Т-104 проводились i к i витания РЛС. Основные летно-технические характеристики, такие как максимальная скорость или дальность полета, на этих машинах, как и на первых двух опытных Т-10, не определялись.

Здесь стоит заметить, что двигатели АЛ- 31Ф, применявшиеся на самолетах Т-103 и Т-104, отличались от всех последующих, которыми стали комплектоваться серийные истребители Су-27, нижним расположением выносных коробок самолетных агрегатов (ВКА). Такая схема имела ряд эксплуатационных преимуществ: генераторы и гидронасосы, расположенные под двигателем, было проще и удобнее обслуживать с земли, к тому же выше была пожаробезопасность — случайно вытекшее из агрегатов масло не могло попасть на раскаленные детали двигателя. Недостаток был один: нижнее расположение ВКА требовало увеличивать поперечное сечение гондол двигателей, что вело к росту лобового сопротивления. Позднее из соображений аэродинамики компоновку коробки агрегатов на двигателе переделали на верхнюю, но на том этапе предпочтение было отдано варианту АЛ-31Ф с нижними ВКА.

НЕЛЕГКИЙ ПУТЬ В СЕРИЮ

К концу 1979 г. в программе испытаний Су-27 принимали участие уже три опытных самолета (Г10-1, Т-103 и Т-104), вскоре к ним должны были присоединиться и первые машины установочной серии. Казалось, все шло по намеченным планам и через пару лет новый истребитель может поступить на вооружение. Однако против запуска в серию самолета в существующей компоновке категорически возражал …главный конструктор М.П.Симонов.

В 1976 г., когда еще только строился Т-101, определился ряд обстоятельств, которые ставили под угрозу выполнение некоторых пунктов технического задания (ТЗ), касающихся требований к летным характеристикам будущего Су-27. Как уже отмечалось выше, проблемы с созданием неохлаждаемых лопаток турбины двигателя и необходимость введения их охлаждения с отбором воздуха от компрессора привели к повышению удельного расхода топлива на крейсерском режиме на 5% (уже в эскизном проекте АЛ-31Ф указывался минимальный удельный расход топлива 0.64 кг/(кгс-ч) вместо заданных 0.61 кг/(кгс-ч), а на практике он возрос еще почти на 5%) и к снижению тяговых характеристик двигателя при полете на большой скорости на высоте и у земли (стендовая тяга сохранялась на уровне заданных 12500 кгс). Во-вторых, разработчики радиоэлектронного оборудования «не укладывались» в весовые характеристики, определенные техническими заданиями на соответствующие комплексы.

Суммарное превышение массы оборудования составляло несколько сотен килограммов, что, естественно, влекло за собой общее перетяжеление самолета, а главное — смещение его центровки вперед, в результате чего Т-10 становился статически устойчивым в продольном канале. В результате утрачивалось основное преимущество разработанной статически неустойчивой компоновки — отсутствие потерь на балансировку. Теперь чтобы сбалансировать самолет, требовалось отклонять стабилизатор носком вниз, и его подъемная сила уже не добавлялась, а вычиталась из подъемной силы крыла. Естественно, что при этом несущие свойства самолета снижались. Весовые лимиты были превышены и создателями ракетного вооружения.

Уточненный расчет летно-технических характеристик самолета Су-27 с учетом всех этих обстоятельств наглядно свидетельствовал: максимальная дальность полета истребителя с полной заправкой топливом лишь немного превышала 3000 км, максимальная скорость полета составляла 2230 км/ч, скорость полета у земли — 1350 км/ч, т.е. по этим трем основным показателям Су-27 на 10-20%уступал ТТТ. Расчеты подтверждались исследованиями специалистов Сибирского’ научно-исследовательского института авиации (СибНИА), в котором с 1972 г. проводился основной объем аэродинамических исследований по теме Су-27. Уточненные данные Су-27 и F-15 были использованы при математическом и полунатурном моделировании воздушных боев с участием этих самолетов, которое проводилось в НИИАС МАП в отделении, возглавляемом доктором технических наук А.С.Исаевым. Результаты этого моделирования также оказались неутешительными: безусловного превосходства над американским аналогом уже не было.

Назревала необходимость коренного пересмотра проекта Су-27. Еще в 1975-1976 гг. в ОКБ и СибНИА были сформулированы основные направления совершенствования конструкции Т-10, благодаря которым в создавшихся условиях можно было обеспечить получение заданных характеристик. Для повышения дальности и скорости полета предстояло значительно снизить аэродинамическое сопротивление самолета за счет уменьшения кривизны профиля крыла, а также омываемой поверхности и миделя фюзеляжа и центроплана. Поднять дальность могло и увеличение внутреннего запаса топлива, нужно было только найти место, куда еще можно «залить» керосин. Для повышения характеристик самолета на больших углах атаки и скольжения было предложено ввести механизацию передней кромки крыла и изменить расположение вертикального оперения. Таким образом, ревизии предстояло подвергнуть такие основополагающие элементы компоновки самолета, как форма и площадь крыла, конфигурация поперечных сечений головной части фюзеляжа, центроплана и мотогондол, размещение оперения.

Убежденным сторонником такого подхода выступал главный конструктор М.П.Симонов, однако руководство Министерства авиационной промышленности имело иное мнение. Министр В.А.Казаков рассчитывал на возможность постепенной доводки истребителя принятой компоновки за счет незначительных доработок конструкции, увеличения запаса топлива и т.п. Поддерживали его и многие представители заказчика. В принципе не против был и Генеральный конструктор Е.А.Иванов. Слишком большие затраты были уже сделаны, и прекращение осваивавшегося в Комсомольске-на-Амуре серийного производства с переводом завода на выпуск повой модели означало не только новые расходы, но И дальнейшее откладывание сроков принятия самолета на вооружение.

Однако М.Н.Симонов упорно настаивал на необходимости радикальной переработки проекта, тем более, что руководимой им группой единомышленников при участии ученых СибНИА еще в 1976-1977 гг. в инициативном порядке была создана, а в последующие два года испытана в аэродинамической трубе новая компоновка истребителя, лишенная недостатков существующей. Главный конструктор (а с конца 1977 г. — и первый заместитель Генерального конструктора) проявил исключительную энергию и смог убедить руководство пойти па риск и принять меры но кардинальному изменению конструкции уже вышедшего на испытания самолета. На положительное решение этого вопроса повлияла поддержка Симонова заместителем министра авиационной промышленности И.С.Силаевым (в 1981-1985 гг. — министр авиационной промышленности СССР).

Вот как вспоминает об этом сам М.П.Симонов: «Мы ставили задачу создать самолет, превосходящий по боевой эффективности любой другой истребитель, стоявший на вооружении ВВС в то время, — самолет завоевания господства в воздухе Чтобы соответствовать этому назначению, необходимо было самолет перепроектировать. Надо было получить разрешение па это МАП. Мы обратились к Ивану Степановичу Силаеву, бывшему тогда заместителем министра. Мы сказали ему: *У нас все основано на данных расчетов и математическом полушплрном моделировании». Силаев мужественно поддержал нас. Он только спросил меня: -Ты уверен, что нет другого пути?» «Конечно, уверен, хотя есть и другой: выпустить серийно сотни и тысячи посредственных истребителей, и если войны не будет, об их посредственности никто не узнает. Но мы же работаем на тог черный день, когда наше оружие должно быть на самом высоком уровне. и поэтому другого пути нет!».

Вскоре после этого М.П.Симонов перешел на работу в министерство, на должность заместителя министра авиационной промышленности по новой технике. Главным конструктором Су27 в декабре 1979 г. был назначен Артем Александрович Колчин, под руководством которого и были проведены работы по созданию принципиально нового варианта самолета. Как показало время, принятое непростое решение оказалось единственно верным, и в результате все-таки был создан истребитель, который и ныне, по прошествии почти двух десятилетий, считается одним из лучших в мире Выпуском Су-27 в окончательном варианте компоновки МЗ им. П.О.Сухого подтвердил свою репутацию мирового лидера авиастроительной индустрии, сохранив верность многолетий традициям ОКБ не сдавать на вооружение посредственных самолетов.

ОТ Т-10 К Т-10С

Вариант истребителя с новой компоновкой получил в ОКБ шифр Т-10С. Полномасштабные работы по его проектированию развернулись в 1979 г. Предварительные исследования по поиску путей преодоления недостатков Т-10 «первой редакции» и обеспечения заданных в ТЗ характеристик, выполненные в ОКБ и СибНИА (здесь этими работами руководил главный аэродинамик института кандидат технических наук Станислав Тиморкаевич Кашафутдипов), позволили сформулировать основные направления модификации исходной компоновки. По мере их проработки Т-10С в конструктивно-компоновочном плане все больше и больше отдалялся от Т-10. В итоге стало ясно, что конструкторам придется проектировать фактически новый самолет. По образному выражению М.П.Симонова, от Т-10 на Т-10С сохранились лишь шины колес основных опор шасси, да катапультное кресло летчика. Сомнению подвергнуты не были только общие принципы, заложенные в проект Су-27 еще П.О.Сухим, — интегральная компоновка несущего корпуса, статически неустойчивая схема, электродистанционная система управления, размещение двигателей в изолированных гондолах с воздухозаборниками под несущим корпусом и т.п.

Т-10С получил новое крыло с прямолинейной передней кромкой и уменьшенной кривизной профиля (деформация срединной поверхности и аэродинамическая крутка сохранялись, только в меньшем объеме). Не оправдавшие себя оживальпые законцовки крыла уступили место традиционным, с постоянным углом стреловидности по передней кромке, при этом на их торцах установили пусковые устройства ракет «воздух-воздух», что позволило, во-первых, отказаться от специальных противофлаттерпых грузов, применявшихся на Т-10, а во-вторых, увеличить количество подвешиваемых на истребитель ракет с 8 до 10. Вместо пусковых устройств ракет на концах крыла могли крепиться контейнеры с аппаратурой радиоэлектронного противодействия. Площадь крыла возросла с 59-4 до 62 м2, существенно изменилась его механизация. Элерон и поворотный закрылок уступили место единому органу управления — флаперону, а переднюю кромку занял отклоняемый носок (на Т-10 передняя кромка крыла не имела механизации), при этом был обеспечен режим автомагического адаптивного отклонения носка и флаперона, реализующий так называемую концепцию полета «по огибающей поляр».

Для снижения аэродинамического сопротивления доработали головную часть фюзеляжа: были изменены ее обводы, применен новый фонарь кабины.

Сечение головной части фюзеляжа в зоне первого топливного бака возросло, а в зоне миделя фюзеляжа, наоборот, уменьшилось. Изменилась компоновка центральной хвостовой балки, которую снабдили цилиндрической законцовкой, являющейся продолжением заднего топливного бака-отсека. Одновременно удалось увеличить общий запас горючего во внутренних баках истребителя до 9.4 т. Значительно «облагородить» обводы мотогондол и снизить их массу позволило решение применить на Т-10С модификацию ТРДДФ АЛ-31Ф с верхним расположением коробки самолетных агрегатов и агрегатов двигателя. При сохранении общей компоновки воздухозаборников на новом истребителе была введена система защиты двигателей от попадания посторонних предметов на рулении, разбеге и пробеге с помощью выпускаемых в воздушные каналы предохранительных сеток, одновременно на нижней поверхности воздухозаборников оборудовали створки дополнительной подпитки.

Для обеспечения необходимой эффективности органов путевой и поперечной устойчивости, продольного, поперечного и путевого управления па больших углах атаки существенным доработкам подверглась компоновка хвостового оперения. Для обеспечения удобного доступа к расположенным над двигателями выносным коробкам агрегатов двухкилевое вертикальное оперение разнесли широко в стороны и разместили па силовых балках по обеим сторонам мотогондол, при этом для килей было найдено оптимальное место в вихревой системе, генерируемой наплывами и консолями крыла. В результате значительно улучшилась путевая устойчивость и управляемость самолета при полете с большими углами атаки и скольжения. Одновременно Т-10С оснастили дополнительными подбалочными гребнями (фальшкилями), улучшающими противоштопорные характеристики.

Установка вертикального оперения на хвостовых балках, кроме того, позволила разместить обтекатели гидравлических рулевых приводов консолей стабилизатора в аэродинамической тени за килями. Несколько изменилась форма в плане горизонтального оперения, а смещение полуосей вращения консолей стабилизатора улучшило их флаперные характеристики и позволило отказаться от противофлаттерных грузов, применявшихся на Т-10. Тормозные щитки — створки основных опор шасси, устанавливавшиеся на истребителях исходной компоновки и не прошедшие испытаний из-за тряски горизонтального оперения при их выпуске, уступили место безмоментному тормозному щитку большом площади, размещенному на верхней поверхности фюзеляжа за кабиной летчика.

Изменилось шасси: основные опоры снабдили пространственной «косой» осью вращения, благодаря чему стадо возможным упростить уборку стоек в центроплан и отказаться от дополнительного элемента опоры — ломающегося подкоса. Функцию подкоса стала выполнять гондола двигателя, на наружной поверхности которой разместили замок выпущенного положения стойки. При этом удалось снизить площадь поперечного сечения несущею корпуса в зоне ниш уборки шасси. Для предотвращения попадания в воздухозаборники брызг, поднимаемых колесом передней опоры шасси при взлете и посадке во время или после дождя, переднюю стойку сместили более чем на 3 м назад. При этом передняя опора стала воспринимать существенно большие нагрузки, и ее пришлось значительно усилить. Уменьшение базы шасси обеспечило отличные характеристики маневренности самолета на земле.

В целом реализации мероприятий по модификации компоновки истребителя позволила уменьшить мидель самолета па 15 благодаря чему аэродинамическое сопротивление при полете с околозвуковыми и сверхзвуковыми скоростями снизилось на 18-20%. Уменьшение кривизны профиля крыла и омываемой поверхности несущего корпуса позволило существенно уменьшить дозвуковое сопротивление. В сочетании с повышением несущих свойств планера и обеспечением хороших характеристик поперечной и путевой устойчивости и управляемости во всех трех каналах это позволило реализовать отличные показатели маневренности истребителя, особенно на больших углах атаки, а также получить заданные характеристики дальности полета.

ИСПЫТАНИЯ

В 1980 г., когда на МЗ им. П.О.Сухого уже полным ходом шли работы по изготовлению опытных экземпляров истребителя новой компоновки, на заводе в Комсомольске-на-Амуре завершалась сборка первых самолетов установочной партии. В конструктивном плане они практически полностью соответствовали опытным Т-101 и Т-102, только кили у них были установлены с некоторым развалом, как у Т-103- Силовая установка их по-прежнему включала двигатели АЛ-21Ф-ЗАИ. Несмотря на то, что с будущим серийным Су-27 они имели очень мало общего, от достройки самолетов установочной партии решили все-таки не отказываться и использовать их для отработки и доводки системы управления вооружением и другого оборудования истребителя, пока будут изготавливаться и проходить начальный этап летных испытаний первые Т-10С. Тем самым планировали компенсировать неизбежное отставание по срокам, связанное с необходимостью переналадки производства на выпуск самолета новой компоновки.

Головной экземпляр установочной партии, получивший шифр Т-105 и серийный № 02-02 (№ 02-01 имел экземпляр для статических испытаний), был готов в июне 1980 г. В том же году за ним последовали Т-106 (№ 02-03) и Т-109 (№ 02-04) (шифры Т-107 и Т-108 были зарезервированы для первых Т-10С). В 1981 г. комсомольский завод построил еще две машины -Т-1010 (№ 03-01) иТЮ-11 (№ 03-02), доведя количество выпущенных летных экземпляров установочной партии до пяти (для отличия от будущих серийных машин они именовались «Су-27 типа Т-105»). Всего же, с учетом опытных образцов, собранных на МЗ им. П.О.Сухого, к 1982 г. было изготовлено 9 летных экземпляров самолета исходной компоновки и один экземпляр для статических испытаний.

Самолеты установочной партии использовались для летных испытаний и доводки бортового радиоэлектронного оборудования. В начале 1981 г. на самолет Т-105 впервые установили исходный вариант оптико-электронной прицельной системы ОЭПС-27 с цифровым вычислителем «Аргон-15». Этот экземпляр был специально выделен для проведения автономных испытаний ОЭПС. Несколько позднее для этих же целей был оборудован и Т-1011. Испытания ОЭПС-27 «первой редакции» проводились до середины 1982 г., когда было принято решение о замене БЦВМ «Аргон-15» на более совершенную Ц100, что потребовало переработки всего математического обеспечения ОЭПС-27. В конце 1982 г. доработанная оптико-электронная прицельная система была установлена на Т-1011 для проведения ее испытания к составе системы управления вооружением С-27.

Значительную роль в проектировании и доводке комплекса БРЭО истребителя Су-27 сыграл Государственный научно-исследовательский институт авиационных систем (в то время — НИИАС МАП), возглавляемый академиком Е.А.Федосовым. В ГосНИИАС было создано и отлажено все программное обеспечение для БЦВМ истребителей 4-го поколения. Для отработки радиолокационных и оптико-электронных прицельных систем и совершенствования алгоритмического обеспечения СУВ С-27 в институте был построен комплекс полунатурного моделирования КПМ-2700. Именно на стендах этого комплекса сначала проходили проверку и испытания все элементы СУВ С-27, и лишь после этого они устанавливались на опытные самолеты.

Постройку первого опытного образца истребителя в компоновке Т-10С названного Т-107 (иначе — Т-10С-1, серийный № 04-03), завершили на МЗ им. П.О.Сухого в конце 1980 г. В марте 1981 г. он был перебазирован на летную станцию ОКБ в Жуковском. Началась подготовка к первому полету. Как и 4 года назад, когда на испытания выходил первый Т-10, ведущим инженером по самолету был назначен Р.Г.Ярмарков, а летчиком-испытателем — В.С.Ильюшпп. 20 апреля 1981 г. Ильюшин впервые поднял Т-107 в воздух. Полет прошел успешно. В том же году были собраны статический (Т-108, или Т-10С-0, серийный № 04-04) и второй летный (Т-1012, или Т-10С-2, № 04-05) экземпляры истребителя Т-10С. Самолеты Т-107 и Т-1012 использовались для определения основных летно-технических характеристик, характеристик устойчивости и управляемости самолета новой компоновки, а также для оценки работы новой силовой установки с верхними коробками приводов.

К сожалению, обеим машинам не суждена была долгая жизнь. 3 сентября 1981 г. был потерян Т-107: при выполнении задания по определению максимальной продолжительности полета на полигоне недалеко от ЛИИ самолет неожиданно для летчика остался без топлива, и В.С.Ильюшину пришлось катапультироваться. Машина с практически пустыми баками упала на землю и разрушилась, а впервые в жизни катапультировавшийся Ильюшин благополучно опустился на парашюте. «Оргвыводы» нe заставили себя долго ждать: был снят с должности главный конструктор А.А.Колчин, уволен ведущий инженер Р.Г.Ярмарков, а В.С.Ильюшина навсегда отстранили от полетов. 23 декабря того же года потерпел катастрофу и Т-1012: при выполнении полета на предельном режиме (число М=2.35, скоростной напор около 9450 кг/м2) произошло разрушение головной части фюзеляжа, и самолет развалился в воздухе, пилотировавший его летчик-испытатель ОКБ Александр Сергеевич Комаров погиб.

Причины катастрофы А.С.Комарова выяснить так и не удалось. По одной из версий, виновниками трагедии стали блоки контрольно-записывающей аппаратуры, установленные на время испытаний в отсеке наплыва крыла, которые сорвались со своих мест при маневре самолета на максимально допустимой скорости и повредили один из силовых элементов конструкции головной части фюзеляжа, в результате чего произошло ее разрушение в воздухе. Однако в официальном заключении аварийной комиссии указывалось, что причина этой катастрофы, происшедшей на полигоне Белый Омут в 70 км восточнее аэродрома ЛИИ, установлена быть не может. И хотя претензий к материальной части высказано не было, катастрофа Комарова повлияла на судьбу Генерального конструктора Е.А.Иванова. Именно Иванов, готовившийся в то время к выборам в Академию Наук, был непосредственным инициатором этого первого полета па предельном режиме. Спустя некоторое время, в конце 1982 г., он был переведен на другую работу в НИИАС МАП и, лишенный возможности заниматься любимым делом, вскоре умер (это произошло 10 июля 1983 г.).

После снятия с должности А.А.Колчина главным конструктором Су-27 в 1981 г. был назначен Алексей Иванович Кнышев, до этого возглавлявший филиал ОКБ П.О.Сухого на авиационном заводе в Комсомольске-на-Амуре и вложивший много труда в освоение серийного производства сначала Т-10, а затем и Т-10С. А.И.Кнышев и поныне руководит всеми работами по самолету Су-27. В 1983 г. Генеральным конструктором МЗ им. П.О.Сухого был назначен М.П.Симонов, под общим руководством которого продолжились работы по доводке Су-27 и созданию на его базе новых модификаций.

А судьба тем временем готовила программе очередной удар. Результаты начавшихся в соответствии с намеченными сроками летных испытаний первого варианта радиолокационной станции «Меч» свидетельствовали о том, что РЛС по ряду позиций не отвечает требованиям технического задания. Был выявлен целый перечень недостатков, которые, по мнению специалистов, не позволяли обеспечить заданные характеристики даже в условиях достаточно длительной доводки аппаратуры. Основные претензии предъявлялись к цифровому вычислителю и щелевой антенне с электронным сканированием луча в вертикальной плоскости, значительное отставание было и с разработкой программного обеспечения РЛПК.

В результате в мае 1982 г. было принято решение прекратить испытания и дальнейшую доводку РЛС «Меч» в ее первом варианте и разработать для нее новую антенну с механическим сканированием на базе антенны РЛС «Рубин» самолета МиГ-29, но с увеличенным в полтора раза диаметром (применение РЛС со щелевой антенной откладывалось до создания модифицированного варианта истребителя — Су-27М). Создание такой антенны поручалось специалистам ПИИР. Вместо вычислителя разработки НИИП предлагалось использовать БЦВМ нового поколения Ц100, созданную в НИИ цифровой электронно-вычислительной техники (НИИЦЭВТ, г. Москва). Разработка нового программного обеспечения поручалась НИИ-АС МАП. В.КГришин был освобожден от должности Генерального конструктора НПО «Фазотрон» и главного конструктора унифицированной СУВ для истребителей Су-27 и МиГ-29 и назначен главным конструктором СУВ С-27, его заместителем стал Т.О.Бекирбаев.

Усилиями специалистов четырех институтов -НИИП, НИИР, НИИЦЭВТ и НИИАС — поставленная задача была выполнена в очень короткие сроки. Уже в марте 1983 г. было подготовлено заключение о готовности обновленной РЛС (она получила шифр Н001) к летным испытаниям в составе СУВ С-27 на самолетах Су-27. Они проводились в ГК НИИ ВВС в Ахтубинске (ныне — ГЛИЦ им. В.П.Чкалова) и были закончены в начале 1984 г. РЛС была предъявлена на совместные испытания, которые успешно завершились всего через два месяца. После небольших доработок программного обеспечения в 1985 г. CУB С-27 была рекомендована к принятию на вооружение.

И хотя не все задумки конструкторов в конечном итоге удалось реализовать, РЛС Н001 вполне- отвечала современным требованиям. Впервые в отечественной авиационной радиолокации при создании этой РЛК были решены задачи обеспечения режима средней частоты повторения ИМ-пульсов для обнаружения и сопровождения цели со стороны задней полусферы на малых высотах, режима радиокоррекции для управления на первом этапе наведения ракет типа Р-27, применения единого передатчика для работы РЛС и подсвета цели для наводимой ракеты, функционирующего последовательно в режиме импульсного и непрерывного излучения. Использование новых технических решений и современной элементной базы позволило уменьшить массогабаритные характеристики аппаратуры примерно вдвое. по сравнению с техникой предыдущего поколения. Были получены следующие основные характеристики РЛС: дальность обнаружения цели типа «истребитель» — 100 км со стороны передней полусферы и 40 км со стороны задней полусферы, количество одновременно сопровождаемых целей на проходе — 10, количество одновременно атакуемых целей — 1. количество одновременно управляемых ракет — 2. диапазон высот обнаруживаемых целей в телесном угле 120° -от 50-100 м до 25 км. При этом обеспечивалась защита практически от всех существовавших в то время типов помех.

В 1982 г. к программе испытаний нового истребителя присоединились первые самолеты новой компоновки, сопранные на серийном заводе в Комсомольске-на-Амуре, — Т-1015 (серийный № 05-01). Т-1017 (№ 05-02) и, чуть позже, Т-1016(№ 05-04). Облет головного серийного Су-27 выполнил 2 июня 1982 г. летчик-испытатель ОКБ Александр Николаевич Исаков. В следующем году комсомольский завод поставил еще 9 самолетов 5, 6 и 7-й серий (шифры ОКБ Т-1018, Т-1020, Т-1021, Т-1022, Т-1023, Т-1024, Т1О-25, Т-1026 и Т-1027), большинство из которых принимало участие в Государственных совместных испытаниях (ГСИ) истребителя Су-27, проводившихся параллельно с развертыванием серийного производства и началом освоения повой машины в войсках. На самолетах Т-1018 и Т-1022, в частности, доводилась оптико-электронная прицельная система ОЭПС-27 С новым вычислителем Ц100, на Т-1020 и Т-1022 отрабатывались групповые действии истребителей.

Не все было гладко и на этом этапе испытаний. В одном из полетов в 1983 г. у самолета Т-1017, который пилотировал летчик-испытатель Николай Федорович Садовников, при выполнении «площадки» на малой высоте и большой скорости разрушилась часть консоли крыла, при этом обломки конструкции повредили вертикальное оперение. Только благодаря большому мастерству испытателя, впоследствии Героя Советского Союза и мирового рекордсмена, полет завершился благополучно. Н.Ф.Садовников посадил на аэродром поврежденный самолет — без большей части консоли крыла, с обрубленным килем -и тем самым предоставил бесценный материал разработчикам машины. Было установлено, что причиной разрушения стал неверно рассчитанный шарнирный момент, возникающий при отклонении поворотного носка крыла на некоторых режимах полета. Полет Садовпикова расставил все -точки над «i» и в расследовании другого происшествия с одним из первых серийных Су-27 Т-1021 (серийный № 05-03), попавшим примерно в то же время в аналогичную ситуацию при испытаниях в ЛИИ. Однако, в отличие от Т-1017, эта машина была потеряна, а летчику удалось катапультироваться. В срочном порядке были проведены мероприятия по доработке самолета: усилена конструкция крыла и планера в целом.

По результатам испытаний конструкция самолета несколько раз подвергалась дальнейшим доработкам: было произведено усиление головной части фюзеляжа и крыла (выпущенные ранее истребители снабжались дополнительными внешними прочностными накладками, а вновь строящиеся имели усиленные силовой набор и панели обшивки); изменилась форма законцовок вертикального оперения; были упразднены устанавливавшиеся ранее на килях весовые балансиры; для размещения блоков выброса пассивных помех увеличилась длина и строительная высота кормового «ласта» — отсека хвостовой части фюзеляжа между центральной балкой и гондолами двигателей и т.п.

В ходе испытаний в состав ОЭПС-27 была введена нашлемная система целеуказания (НСЦ) «Щель-ЗУМ». Эта аппаратура, разработанная на киевском заводе «Арсенал» (главный конструктор А.К.Михайлик), включала нашлемное визирное устройство и блок оптической локации со сканерным устройством определения угла поворота головы летчика. НСЦ позволяла измерять координаты линии визирования при визуальном слежении за целью летчиком в зоне +60″ по азимуту и от -15° до +60° по углу места при скорости линии визирования до 20°/с, а также осуществлять наведение на цель зоны автоматического захвата ОЛС с одновременной передачей координат линии визирования цели в БРЛС и головки самонаведения ракет. Совместное использование НСЦ и ОЛС позволяло в ближнем маневренном бою сократить время прицеливания, осуществлять быстрый захват цели, обеспечивать целеуказание головкам самонаведения ракет до захода цели в конус возможных углов захвата цели головкой и тем самым осуществлять пуск ракет при максимально допустимых углах.

В середине 80-х гг. завершились государственные испытания и состоялось принятие на вооружение управляемых ракет «воздух-воздух» нового поколения: УР средней дальности Р-27Р и Р-27Т с полуактивной радиолокационной и тепловой головками самонаведения (в 1984 г.), УР ближнего маневренного воздушного боя Р-73 с тепловой головкой самонаведения (в 1985 г.) и УР увеличенной дальности Р-27ЭР и Р-27ЭТ (в 1987 г.). Таким образом, к этому времени состав системы вооружения и бортового оборудования самолета Су-27 сложился окончательно.

Основу БРЭО составила система управления вооружением С-27, включающая: радиолокационный прицельный комплекс РЛПК-27 с РЛС Н001, запросчиком государственного опознавания и цифровым вычислителем Ц100; оптико-электронную прицельную систему ОЭПС-27 с оптико-локационной станцией ОЛС-27, нашлемной системой целеуказания «Щель-ЗУМ» и цифровым вычислителем Ц100; систему единой индикации СЕИ-31 «Нарцисс» с прицельно-пилотажным индикатором на фоне лобового стекла и индикатором прямого видения; систему управления оружием. СУВ взаимодействовала с пилотажно-навигационным комплексом ПНК-10, бортовой частью командной радиолинии управления «Спектр», системой госопознавания, аппаратурой телекодовой связи (ТКС) и аппаратурой бортового комплекса обороны (станцией предупреждения об облучении «Береза», станцией активных помех «Сорбция» и устройствами выброса пассивных помех АПП-50). СУВ С-27 обеспечивала применение самолета Су-27 в наземных системах наведения с командным управлением и полуавтономными действиями с наведением на цель как одиночного самолета, так и группы. Кроме того, были обеспечены автономные групповые действия истребителей (до 12 самолетов в группе).

Первые Су-27 поступили в вооруженные силы в 1984 г., к концу следующего года было выпущено уже значительное количество таких истребителей, и началось массовое перевооружение частей истребительной авиации войск ПВО и ВВС па новый тип самолета. Государственные совместные испытания Су-27 завершились в 1985 г. Полученные результаты свидетельствовали о том. что создан действительно выдающийся самолет, не имеющий себе равных в истребительной авиации по маневренности, дальности полета и боевой эффективности. Однако некоторые системы бортового радиоэлектронного оборудования (в первую очередь, аппаратура РЭП и система управлении групповыми действиями) требовали дополнительных испытаний, которые проводились по специальным программам уже посте окончания ГСИ. После отладки всего комплекса БРЭО Постановлением Совета Министров СССР от 23 aвгycra 1990 г. Су-27 был официально принят на вооружение ВВС и авиации ПВО Советского Союза.

Завершение создания самолета Су-27 было отмечено рядом государственных наград и премий, которые вручили разработчикам, испытателям и изготовителям истребителя. В середине 90-х гг. создатели машины полумили еще одну, не совсем обычную награду. В 1996 г. Союзом дизайнеров Российской Федерации была проведена сертификация самолета Су-27 и его модификации Су-32ФП, высокий дизайнерский уровень которых подтвержден сертификатами № 001 и 002 от 10 июня 1996 г. На прошедшей в декабре 1996 г. — январе 1997 г. выставке-конкурсе «Дизайн-96» самолет Су-27 завоевал первое место (серебряная «Виктория») в номинации «Промышленный дизайн» и «Гран-при» (золотая «Виктория») выставки. При этом было отмечено, что основные черты промышленного дизайна самолета Су-27 оказали и будут оказывать большое влияние на формирование облика отечественных и зарубежных самолетов следующего поколения. В 1997 г. АООТ «ОКВ Cvxoro» совместно с Союзом дизайнеров РФ представило на соискание Государственной премии Российской Федерации в области литературы и искусства по разделу «Промышленный дизайн» истребитель Су-27 и семейство самолетов, созданных на сто базе. На соискание Государственной премии был выдвинут авторский коллектив в составе:

    Сухой Павел Осипович (Генеральный конструктор ОКБ до 1975 г.), посмертно; Симонов Михаил Петрович (Генеральный конструктор «ОКБ Сухого» с 1983 г., в 1976-1979 гг. -главный конструктор самолета Су-27); Авраменко Владимир Николаевич (во время освоения серийного производства Су-27 — директор Комсомолького-на-Амуре АПО, затем директор МЗ им. П.О.Сухого); Антонов Владимир Иванович (заместитель начальника отдела проектов «ОКБ Сухого», один из авторов компоновки Су-27): Ильюшин Владимир Сергеевич (ведущий летчик-испытатель «ОКБ Сухого», поднявший в первый полет и проводивший испытания опытных самолетов Т-10 и Т-10С, в настоящее время -заместитель главного конструктора «ОКБ Сухого»); Кашафутдинов Станислав Тиморкаевич (главный аэродинамик СибНИА, один из авторов аэродинамической компоновки Су-27); Кпышев Алексей Иванович (главный конструктор самолега Су-27 с 1981 г.); Погосян Михаил Асланович (во время разработки модификаций Су-27К, Су-27М, Су-27ИБ — начальник бригады истребителей отдела проектов, затем начальник отдела проектов, главный конструктор, 1-й заместитель Генерального конструктора, в настоящее время — Генеральный директор «ОКБ Сухого»).

СЕРИЙНОЕ ПРОИЗВОДСТВО

Серийный выпуск истребителей Су-27 развернулся в 1982 г. на авиационном заводе в г. Комсомольск-на-Амуре. Это предприятие, имевшее к тому времени почти полувековую историю, уже более 20 лег строило сверхзвуковые самолеты марки «Су». Заложенный летом 1934-го, два года спустя завод № 126 приступил к выпуску разведчиков Р-6 (АНТ-7) конструкции А.Н.Туполсва. С 1938 г. здесь строились дальние бомбардировщики ДБ-3 ОКБ С.В.Ильюшина и их модификации, в первую очередь, ДБ-ЗФ (Ил-4). В военные годы в Комсомольске-на-Амурс собрали более 2700 Ил-4, внесших значительный вклад в победу над врагом. После войны завод выпускал транспортные самолеты Ли-2, а с 1950 г. переключился на производство реактивной авиационной техники. Сначала здесь был освоен выпуск истребителей МиГ-15бис, а затем МиГ-17 и МиГ-17Ф.

Авиамодель Ил-28у

Для быстрого массового переучивания строевых летчиков, пере ходивших с поршневого бомбардировщика на реактивный самолет, требовалось иметь учебно-тренировочный вариант реактивного бомбардировщика,и конструкторскому коллективу С. В. Ильюшина было поручено в кратчайшие сроки создать такой самолет. Менее чем через месяц после выдачи задания, 14 октября 1949 г., С. В. Ильюшин утвердил эскизный проект учебно-тренировочного самолета Ил-28У с двумя турбореактивными двигателями ВК-1. Учебно-тренировочный самолет Ил-28У отличался от боевого самолета Ил-28 носовой частью фюзеляжа, в которой взамен кабины штурмана была размещена кабина летчика-инструктора, оснащенная оборудованием, рассчитанным на самостоятельное управление самолетом на земле и в воздухе, а также на осуществление полного контроля за действиями ученика. Кабина ученика являлась копией кабины летчика боевого самолета Ил-28, за исключением незначительных изменений в компоновке приборной доски, в которой был создан вырез для зрительной связи инструктора и ученика. Все управление самолетом Ил-28У, его агрегатами и системами сделали дублированным, и по желанию инструктора, имевшего в своем распоряжении рычаги и тумблеры переключения, оно могло осуществляться как из передней, так и из основной кабин. Самолет Ил-28У не имел вооружения: передние и кормовые пушки, бомбодержатели, прицелы, командные пульты и другое обслуживающее вооружение самолета оборудование были сняты. Однако в случае необходимости на самолете Ил-28У могли проходить обучение и кормовые стрелки-радисты, для чего кормовая кабина оснащалась соответствующим оборудованием.

18 марта 1950 г. летчик-испытатель В. К. Коккинаки впервые поднял самолет Ил-28У в воздух. Испытательные полеты показали, что летно-технические данные самолета Ил-28У, за исключением лучшей скороподъемности, и характеристики продольной устойчивости практически не отличаются от аналогичных характеристик боевого самолета. При М = 0,78 в горизонтальном полете никаких нарушений в продольной балансировке самолета не отмечалось.

Самолет оказался устойчивым на всем диапазоне скоростей, легко выполнял все маневры, необходимые для данного типа бомбардировщиков, устойчиво выполнял виражи, допуская крен до 70 … 80 град. Набор высоты при боевом развороте достигал 2000 м. Управление самолетом из кабины инструктора по простоте и удобствам не отличалось от управления самолетом из кабины боевой машины Ил-28.

Заводские испытания опытного самолета Ил-28У продолжались до 30 марта. К этому времени первые серийные бомбардировщики Ил-28 стали поступать на вооружение авиационного полка, которым командовал Герой Советского Союза подполковник А. А. Анпилов. Для переучивания летчиков этого полка было решено использовать опытный самолет Ил-28У.

Переход летчика с учебной машины на боевую не требовал дополнительного обучения. Практика подготовки летчиков показала, что для выпуска летчика, имевшего налет 350 … 400 ч на самолетах от У-2 до Ту-2, в самостоятельный полет на боевом самолете Ил-28, необходимо было сделать от двух до четырех тренировочных полетов на самолете Ил-28У.

Благодаря использованию самолета Ил-28У полк подполковника А. А. Анпилова быстро освоил боевые самолеты Ил-28 и 1 мая 1950 г. они, пилотируемые летчиками этого полка, впервые приняли участие в воздушном параде над Красной площадью в Москве. Самолет Ил-28У был принят на вооружение советских ВВС и строился серийно.

Авиамодель Ju-87

Авиамодель Ju-87

Авиамодель ОК Буран (11Ф35)

Авиамодель ОК Буран (11Ф35)

Авиамодель Cу-27

Разрабатывавшийся первоначально как «чистый» истребитель-перехватчик, Су-27 во второй половине 70-х гг. решено было дооснастить авиационными средствами поражения наземных целей — стандартными для ВВС авиабомбами калибра 100,250 и 500 кг, зажигательными баками и неуправляемыми ракетами калибра 57,80 и 240 мм. При этом максимальная бомбовая нагрузка у Су-27 могла доходить до 8 т, в то время как у МиГ-29 — всего до 2-3 т. Правда, неуправляемое оружие «воздух-поверхность» на первых модификациях Су-27 так и не прижилось, а в конце 80-х гг., в соответствии с обязательствами СССР по Договору по ограничению вооруженных сил в Европе, серийные самолеты, принципиально имевшие техническую возможность применения такого оружия, были ее лишены (путем демонтажа соответствующих блоков системы управления оружием и электропроводки управления сбросом бомб и пуском НАР).

Стоит отметить, что создание СУВ нового поколения стало одной из наиболее сложных задач в процессе разработки истребителей 4-го поколения. Имевшаяся информация о самолетах F-15 и F-16 подтверждала, что отечественные истребители отставали от зарубежных аналогов прежде всего в техническом уровне оборудования — особенно в радиолокационной, электронной и бортовой вычислительной аппаратуре. Поэтому возникала объективная необходимостью срочного выполнения ряда научно-исследовательских и опытно-конструкторских работ прежде всего в области построения бортовых РЛС, цифровых вычислительных систем, комплексов информационного обмена, информационно-управляющего поля кабины летчика и комплексирования бортового радиоэлектронного оборудования (БРЭО).

Особенно остро стояла проблема создания бортовой цифровой вычислительной техники, пригодной для использования на перспективных истребителях, разработки методов и средств подготовки программного обеспечения и формирования каналов информационного обмена. Первые исследования в области «цифризации» БРЭО летательных аппаратов были развернуты в СССР еще в конце 60-х гг. В них участвовало несколько предприятий авиационной, радиотехнической, оборонной и электронной промышленности: НИИАС, ЛИИ, ЛНПО «Электроавтоматика», НПО «Фазотрон», НПО «Ленинец», НИИЦЭВТ, МНИИП (НПО «Вега»). В начале 70-х гг. в серийное производство была запущена первая бортовая цифровая вычислительная машина — «Орбита-10», которая была спроектирована в ЛНПО «Электроавтоматика» и использовалась в навигационной системе «Пеленг» высотного разведчика МиГ-25Р, прицельно-навигационном комплексе ПpHK-23 истребителя-бомбардировщика МиГ-23БМ (МиГ-27), прицельно-навигационной системе «Пума» фронтового бомбардировщика Су-24 и навигационном комплексе НК-45 бомбардировщика-ракетоносца Ту-22М. Нетрудно заметить, что среди перечисленных самолетов нет ни одного истребителя: в связи с особенностями назначения и использования авиационных комплексов истребительной авиации, в первую очередь, многофункциональностью и высокой динамикой процессов боевого применения, внедрение цифровой техники в сосгав их БРЭО имело ряд серьезных проблем и началось только с машин 4-го поколения — Су-27 и МиГ-29. Уже в ходе создания последних выявилась необходимость организации нескольких специальных научно-исследовательских работ в этой области.

Комплексная система управления вооружением обоих истребителей строилась по схожим принципам и впервые в мире включала два взаимно дополняющих друг друга обзорно-прицельных канала (радиолокационный прицельный комплекс и оптико-электронную прицельную систему) с автономными цифровыми вычислителями, а также систему единой индикации (СЕИ), систему управления оружием (СУО), блоки сопряжения и коммутации. При этом прицельное оборудование, разрабатывавшееся для Су-27, отличалось более высокими характеристиками. Разработка радиолокационного прицельного комплекса РЛПК-27 для самолета Су-27 и системы управления вооружением С-27 в целом была задана НИИ приборостроения (НИИП, г. Жуковский), а РЛПК-29 для самолета МиГ-29 — НИИ радиостроения (НИИР, г. Москва). Оба института входили в то время в состав Научно-конструкторского объединения (НКО) «Фазотрон» (Генеральный конструктор Ю.Н.Фигуровский, первый заместитель Генерального конструктора В.К.Гришин). Создание оптико-электронных прицельных систем ОЭПС-27 и ОЭПС-29 для обоих самолетов было поручено московскому ЦКБ «Геофизика» (главный конструктор Д.М.Хорол).

Постановлением правительства 1976 г. предусматривалось оснащение самолета Су-27 бортовой радиолокационной станцией, превосходящей по характеристикам РЛС AN/APG-63 самолета F-15A. Американский радиолокатор стал первой в мире БРЛС импульсно-доплеровского типа с полностью цифровой обработкой информации. Он оснащался щелевой антенной с гидроприводом, обеспечивающей обзор пространства в диапазоне +60° по азимуту и углу места. Использование нескольких режимов излучения позволяло РЛС обнаруживать воздушные цели с эффективной отражающей поверхностью (ЭОП) 3 м- па фоне земли на встречных курсах на дальности 80-100 км (в режиме квазинепрерывного излучения с высокой частотой повторения импульсов) и на догонных курсах на дальности 40-50 км (в режиме квазинепрерывного излучения со средней частотой повторения импульсов и сжатием импульсов на базе фазово-кодовой модуляции), а также осуществлять сопровождение па проходе до 10 целей с захватом и последующим сопровождением одной из них с организацией ее непрерывного подсвета для наведения ракеты с полуактивной радиолокационной головкой самонаведения. Очевидно, что все эти возможности должна была иметь и отечественная РЛС для самолета Су-27, получившая название «Меч».

Для обеспечения превосходства РЛС «Меч» над APG-63 ее решено было оснастить оригинальной фазированно-щелевой антенной, реализующей механическое сканирование в горизонтальной плоскости и электронное управление лучом в вертикальной плоскости. Таким образом, в азимутальной плоскости она работала как щелевая, а в угломестной — как ФАР. Электронное перемещение луча в вертикальной плоскости позволяло в режиме обзора при горизонталыном механическом сканировании луча практически мгновенно направлять его на ранее обнаруженные цели. Это обеспечивало при многострочном обзоре регулярное, в 2-3 раза более частое, чем при механическом сканировании, обращение антенны к рапсе обнаруженным целям. Таким образом радикально решался вопрос повышения точности прогнозирования положения цели в режиме сопровождения на проходе, что, в свою очередь, позволяло рассматривать вопрос одновременного обстрела нескольких (по крайней мере двух) целей с их непрерывно-дискретным подсветом (что в то время было невозможно для самолета F-15, оснащенного РЛС с чисто механическим сканированием и ракетами с полуактивными радиолокационными головками самонаведения).

Несмотря па то, что РЛС для самолета МиГ-29, получившую название «Рубин», предполагалось оснастить традиционной двухзеркальной антенной Кассегрейна с механическим сканированием в обеих плоскостях, в результате предварительной проработки обеих РЛС было установлено, что возможна унификация их основных блоков. Это могло дать серьезный выигрыш в стоимости и сроках разработки, а также трудоемкости последующего серийного производства. В 1978 г. было принято решение о создании унифицированной системы, главным конструктором которой был назначен Виктор Константинович Гришин (одновременно он стал Генеральным директором и Генеральным конструктором НКО «Фазотрон»). Главным конструктором С-27 назначили Т.О.Бекирбаева (НИИП), а главным конструктором С-29 — Ю.П.Кирпичева (НИИР). Разработка блоков дня унифицированной системы была поделена между двумя институтами. Коллективу НИИП была поручена разработка задающего устройства передатчика, устройств ввода-вывода, сопряжения с ракетами, БЦВМ, цифровых датчиков «вал-код» и бортовой части системы объективного контроля, а коллективу НИИР -высокочастотного и низкочастотного приемников, выходной ступени передатчика, наземной части системы объективного контроля и системы встроенного контроля. Таким образом, степень унификации С-27 и С-29 достигала 70%. Остальные блоки, а также программное обеспечение каждое предприятие разрабатывало самостоятельно.

Нa всю работу отводилось 2.5 года, и задача в целом была выполнена. Забегая вперед, следует сказать, что степень унификации обеих систем оказалась даже более высокой, чем планировалось: в 1982 г. по ряду причин от щелевой антенны РЛС «Меч» пришлось отказаться, и в серию самолеты Су-27 пошли с антеннами Кассегрейна, подобными применяемым в РЛС истребителя МиГ-29, но с другими характеристиками. Но об этом драматическом моменте в судьбе Су-27 — чуть позже.

Разрабатывавшиеся в ЦКБ «Геофизика» под руководством главного конструктора Давида Моисеевича Хорола оптико-электронные прицельные системы ОЭПС-27 и ОЭПС-29 для самолетов Су-27 и МиГ-29 были аналогичны по назначению и конструкции, разница заключалась лишь в более высоких характеристиках ОЭПС-27 по дальности действия и применении в ней более широкополосного чувствительного элемента. ОЭПС-27 предназначалась для поиска, обнаружения и сопровождения воздушных целей по их инфракрасному излучению, определения координат линии визирования при работе летчика по визуально видимым целям, измерения дальности и решения задач прицеливания по воздушным и наземным целям. Первоначально в состав ОЭПС-27 планировалось включить оптико-локационную станцию ОЛС-27 (состояла из обзорно-следящего теплопеленгатора и лазерного дальномера) и специализированный цифровой вычислитель. В дальнейшем в состав ОЭПС-27 дополнительно ввели нашлемную систему целеуказания (НСЦ).

Теплопеленгатор ОЛС-27 предназначался для ведения автономного поиска воздушных целей в поле обзора размером 60° по азимуту и 12° по углу места, обнаружения в простых метеоусловиях на средних высотах цели типа «истребитель» при работе его двигателей на режиме «максимал» на дальности до 50 км, автоматического захвата на сопровождение обнаруженной цели в зоне 3×3° на дальности не менее 70% от дальности обнаружения, автоматического сопровождения воздушной цели при угловой скорости линии визирования до 25°/с. Входящий в комплект ОЛС-27 лазерный дальномер предназначался для прецизионного измерения дальности до цели, сопровождаемой теплопеленгатором. Обзор пространства ОЛС-27 должен был осуществляться с помощью качания в двух взаимно перпендикулярных плоскостях закрепленного па кардановом подвесе зеркала. Это зеркало в режиме автосопровождения являлось исполнительным элементом следящей системы, которая обеспечивала бы непрерывное совмещение оптической оси теплопеленгатора и лазерного дальномера с направлением на цель.

Введение в СУВ С-27 аппаратуры, работающей в диапазоне оптических и инфракрасных длин волн должно было обеспечить скрытность обнаружения цели, увеличение точности измерения координат по углу и по дальности и позволяло бы дублировать в основных режимах работу БРЛС. После получения информации о целях, находящихся в поле обзора, должен был осуществляться выбор атакуемой цели, ее захват и сопровождение с выдачей координат в головки самонаведения ракет. В процессе организации боя ОЭПС-27 должна была выдавать необходимую информацию для управления самолетом и пуска ракет.

Основные требования к перспективным управляемым ракетам для истребителей 4-го поколения были сформулированы к 1973 г., а их полномасштабное проектирование было задано Постановлением ЦК КПСС и Совета Министров СССР, вышедшим в 1974 г. В формировании концепции новых ракет «воздух-воздух» и дальнейшем сопровождении работ по их созданию активное участие принимали специалисты НИИАС МАП, в первую очередь, Р.Д.Кузьминский, В.Ф.Левитин и А.Н.Давыдов. Проектирование ракеты средней дальности, получившей название К-27, велось на конкурсной основе МЗ «Вымпел» и МЗ «Молния» (ПКПК). Особенностью УР должен был стать модульный принцип ее построения, благодаря которому на базе единой конструкции создавалось семейство ракет с различными системами наведения (с ПАРГС, ТГС, активной и пассивной радиолокационными головками самонаведения) и двумя вариантами двигательных установок (ДУ): базовой, обеспечивающей дальность пуска до 70-80 км, и ДУ с повышенной энергетикой, обеспечивающей дальность пуска до 120-130 км. Ракеты с базовой ДУ (первоначальное наименование К-27А) стартовой массой до 250 кг предназначались, в первую очередь, для легкого истребителя МиГ-29, а «энергетические» ракеты (К-27Б) массой около 350 кг — для многоцелевого Су-27, предполагалась также возможность применения новых ракет на серийных истребителях МиГ-23МЛ и Су-15ТМ. По характеристикам К-27 должна была превосходить появившуюся в 1975 г. новую американскую ракету AIM-7F «Спарроу». После рассмотрения предъявленных на конкурс технических предложений обоих коллективов предпочтение было отдано разработке МЗ «Вымпел» (главный конструктор А.Л.Ляпин).

В эскизном проекте К-27 была представлена в двух вариантах: нормальной аэродинамической схемы и схемы «утка» с развитыми по площади рулями, имеющими обратную стреловидность по передней кромке. По рекомендации ЦАГИ был выбран второй вариант. Ракета предлагалась сразу в 4 модификациях: «базовых» К-27Р и К-27Т с ПАРГС и ТГС соответственно и «энергетических» К-27ЭР и К-27ЭТ. Коренным отличием системы наведения УР от всех других существовавших в то время как в СССР, так и за рубежом, стала реализация в ней режима инерциального управления с радиокоррекцией по сигналам БРЛС самолета-носителя на первом этапе полета ракеты, предшествующем участку самонаведения, благодаря чему значительно увеличилась эффективная дальность пуска. С созданием ракет К-27 и К-27Э удалось добиться значительного превосходства отечественных истребителей над самолетами вероятного противника, вооруженными УР AIM-7F «Спарроу» (F-15 и F/A-18): наличие модульных систем наведения с ПАРГС и ТГС обеспечивало тактическую гибкость в применении оружия в зависимости от боевых условий и затрудняло противнику выбор средств противодействия; увеличение дальности пуска за счет использования корректируемого инерциального режима наведения делало возможным опережение по моменту пуска ракет и начала выполнения маневра тактического отворота, модульность по ДУ позволяла иметь легкую модификацию К-27, равную по баллистическим возможностям ракете AIM-7F, и энерговооруженную модификацию К-27Э, значительно превосходившую AIM-7F по средней скорости и дальности полета. В 1984-1987 гг. семейство УР, получивших названия Р-27Р, Р-27Т, Р-27ЭР и Р-27ЭТ, было принято на вооружение. Значительную роль в их создании сыграл ГАСоколовский, возглавивший в 1981 г. МКБ «Вымпел».

Создание новых РМД и РБВБ с дальностью пуска 12-20 км велось с 1973 т. коллективами МЗ «Вымпел» и МЗ «Молния». Первый проектировал ракету малой дальности К-14, являвшуюся глубокой модификацией ракет К-13М и К-13М1 в направлении оснащения всеракурсной ТГС «Радуга» и повышения располагаемых перегрузок, второй — малогабаритную высокоманевренную бескрылую ракету ближнего воздушного боя К-73 с газодинамическим управлением и ТГС ограниченной ракурсности, развивавшую концепцию легкой (масса 45 кг) РБВБ К-бО. К середине 70-х гг. исследования тактики ближнего маневренного боя истребителей и анализ зарубежного опыта создания новых РМД и РБВБ показали, что перспективная ракета ближнего маневренного воздушного боя обязательно должна оснащаться всеракурсной ТГС. В связи с этим МЗ «Молния» было предложено доработать проект К-73 под головку самонаведения такого типа — широкоугольную ТГС «Маяк», создаваемую киевским заводом «Арсенал» (главный конструктор А.В.Молодых). Большие габариты и масса всеракурсной ТГС привели к увеличению размерности ракеты, при сохранении бескрылой схемы с чисто газодинамическим управлением. Однако в 1976 г. проект К-73 пришлось еще раз коренным образом переработать: было установлено, что ракета принятой схемы имела ряд серьезных недостатков, в первую очередь, недостаточную маневренность и малое время управляемого полета. В связи с этим решено было вернуться к традиционной схеме с крылом, а управление сделать комбинированным аэрогазодинамическим (учитывался и анализ материалов по аналогичной американской бескрылой ракете «Эджайл» с газодинамическим управлением, разработка которой была прекращена по тем же причинам), в результате чего масса УР возросла до 105 кг.

Так, в три этапа, сложился облик К-73, ставшей первой в новом классе ракет ближнего высокоманевренного воздушного боя, пришедших на смену РБВБ типа Р-60 и РМД типа Р-1ЗМ. Принятая на вооружение в 1985 г., Р-73 по сей день не имеет аналогов среди зарубежных РМД по маневренности и боевой эффективности. Проектирование ракеты на МЗ «Молния» велось под руководством главного конструктора М.Р.Бисновата, после его смерти в 1977 г. тематика УР в образованном в 1976 г. НПО «Молния» (главный конструктор и Генеральный директор Г.Е.Лозино-Лозинский) возглавлялась Г.И.Хохловым, а в 1982 г. была полностью передана на МЗ «Вымпел», куда перевели группу специалистов — «ракетчиков» из НПО «Молния». Доводка ракеты К-73 и создание ее последующих модификаций осуществлялись в ГосМКБ «Вымпел» под руководством главного (а затем Генерального) конструктора ГАСоколовского.

Что касается РМД К-14, разрабатывавшейся одновременно с К-73, то к 1976 г., когда были выпущены эскизные проекты по обеим ракетам, стало ясно, что по назначению и тактико-техническим характеристикам она фактически дублирует изделие НПО «Молния»; близкими были и массогабаритные параметры. Основные преимущества К-14 заключались в более простой конструкции (управление было аэродинамическим, а для расширения диапазона располагаемых перегрузок применялось оригинальное устройство, названное флюгирующим рулем) и высокой степени ее преемственности по отношению к серийным РМД Р-ЗС, Р-13М и Р-13М1, что могло позволить с минимальными доработками носителей применять ее на самолетах МиГ-21, МиГ-23, МиГ-27, Як-28П, Су-22 и др. В связи с этим долгое время работы по К-14 и К-73 велись параллельно, окончательный выбор в пользу последней был сделан только в конце 70-х гг., когда было признано, что применявшаяся на К-14 так называемая «безавтопилотная» система управления (в ней реализовывалась обратная связь по шарнирному моменту. а не по перегрузке), унаследованная еще от Р-ЗС образца 1960 г., не имеет будущего на перспективных ракетах ближнего высокоманевренного воздушного боя. Полностью же переделывать систему управления ракеты, как предлагали разработчику специалисты НИИАС, МЗ «Вымпел» не рискнул (предприятие в это время было загружено работами по другим УР «воздух-воздух» — К-24, К-27, К-33 и т.д.).

Двухствольная автоматическая пушка АО-17А (9А623), спроектированная в тульском КБ приборостроения (главный конструктор А.Г.Шипунов) по схеме пушки ГШ-23 под патрон АО-18 калибра 30 мм, имела темп стрельбы 3000 выстрелов в минуту, начальную скорость снаряда 850 м/с и массу около 100 кг. К 1976 г. АО-17А успешно прошла наземные государственные испытания, однако от применения ее на истребителях Су-27 и МиГ-29 позднее отказались. В 1976 г. КБП вышло с предложением о создании вдвое более легкой (массой 50 кг) одноствольной пушки ТКБ-687 (9А4071) под тот же 30-мм патрон АО-18 со скорострельностью 1500-1800 выстрелов в минуту и начальной скоростью снаряда 850-900 м/с. В следующем году был построен ее макетный образец, а в 1983 г. эта пушка под названием ГШ-301 была принята на вооружение истребителей Су-27 и МиГ-29 (пушку же АО-17А (ГШ-30) решено было использовать на самолетах-штурмовиках Су-25 и вертолетах огневой поддержки Ми-24П, на вооружении которых она состоит с 1982 г.).

ПЕРВЫЕ ПОЛЕТЫ

Основной объем проектных работ по самолету Су-27 был в целом завершен к середине 70-х гг. В 1975 г. начался выпуск рабочих чертежей, и вскоре та МЗ «Кулон» приступили к изготовлению первых опытных экземпляров самолета. К сожалению, Павел Осипович Сухой не дождался появления на свет нового истребителя: он умер 15 сентября 1975 г., а ОКБ, получившее его имя, возглавил первый заместитель Сухого Евгений Алексеевич Иванов (в течение двух лет он был исполняющим обязанности Генерального конструктора и только в конце 1977 г. был утвержден на эту должность официально). Вскоре сменился и руководитель темы Су-27: в связи с болезнью Н.С.Чернякова главным конструктором самолета в феврале 1976 г. был назначен Михаил Петрович Симонов. Под его непосредственным руководством вплоть до конца 1979 г., когда Симонов перешел па работу в Министерство авиационной промышленности СССР, и осуществлялись все работы по постройке опытных экземпляров Т-10, проведению их летных испытаний и проектированию модификаций самолета.

Сборка первого опытного образца Су-27 — самолета Т-101 -была завершена в начале 1977 г., и он был перебазирован на летную станцию ОКБ на аэродроме ЛИИ в Жуковском. Как уже говорилось выше, предусмотренные проектом двухконтурные турбореактивные двигатели нового поколения АЛ-31Ф к этому времени готовы еще не были, и первые Т-10 решили оснастить двигателями АЛ-21Ф-ЗАИ, являющимися модификацией серийных ТРДФ АЛ-21Ф-3, которые широко применялись на других самолетах фирмы (Су-17М, Су-17М2, Су-17МЗ, Су-17УМ, Су-20, Су-24). Установка АЛ-21Ф-3 — пусть менее мощных, менее экономичных и более тяжелых по сравнению со штатными АЛ-31Ф, зато уже освоенных в производстве и эксплуатации, -позволяла начать испытания Су-27 уже в 1977 г., в то время как первые работоспособные АЛ-31Ф могли появиться только в 1978-1979 гг. На самолетах с АЛ-21Ф-3 можно было отработать в условиях реальных летных испытаний аэродинамику новой компоновочной схемы, определить основные характеристики устойчивости и управляемости, некоторые летные данные, осуществить доводку нового комплекса бортового оборудования и вооружения. Тем самым, не дожидаясь получения первых летных экземпляров штатного двигателя, планировалось провести значительный объем испытаний по программе, а следовательно, ускорить сроки принятия самолета на вооружение.

Ведущим летчиком-испытателем Т-101 был назначен шеф-пилот МЗ им. ПО.Сухого Герой Советского Союза Заслуженный летчик-испытатель СССР генерал-майор авиации Владимир Сергеевич Ильюшин. Подготовка самолета к испытаниям осуществлялась под руководством ведущего инженера Рафаила Григорьевича Ярмаркова, в бригаду испытателей входили также инженеры H.П.Иваном и Н.Ф.Никитин (впоследствии — главный Koнструктор самолета Су-27М, а сейчас — Генеральный конструктор и Генеральный директор ВПК «МАПО). После проведения необходимых наземных проверок п выполнения скоростных рулежек было получено разрешение методического совета ЛИИ на первый вылет, а 20 мая 1977 г. В.С.Ильюшин поднял Т-101 в воздух. Первый полет Т-101. получившего бортовой № 10, прошел успешно. В дальнейшем этот экземпляр использовался для определения характеристик устойчивости и управляемости, а также доводки системы управления нового истребителя. Система управления вооружением на нет не устанавливалась. В течение первых 8 месяцев испытаний на Т-101 было выполнено 38 полетов. После перехода Р.Г.Ярмаркова нa другой самолет ведущим инженером по испытаниям Т-101 был назначен Н.Ф. Никитин. В 1985 т.. когда все задачи, поставленные перед 110-1, были выполнены, самолет передан в Музей ВВС в подмосковном Moнино.

В 1978 г. в опытном производстве МЗ им. П.О.Сухого был построен второй опытный самолет (Т-102). Его летные испытания проводил летчик-испытатель ОКЬ Евгений Степанович Соловьев. ведущим инженером был Марк Беленький, К сожалению, летать этом} экземпляру довелось недолго: 7 июля 1978 г. он потерпел катастрофу, в которой погиб Е.С.Соловьев.

Причиной происшествия стало разрушение самолета в воздухе из-за непреднамеренного выводи его на перегрузку, превышающую максимально допустимую. В соответствии с поставленным заданием, летчик проводил испытания по подбору оптимальных передаточных отношений системы дистанционного управления истребителя. Аналогичные исследования до этого проводил и В.С.Илыошинна Т-101, при этом обоими летчиками уже было оценено функционирование системы па больших и средних высотах. Соловьеву же предстояло пойти дальше и получить характеристики управляемости на высоте 1000 м и скорости 1000 км/ч.

Выполнение двух «площадок» на высотах 11 и 5 км с оценкой работы СДУ проблем не вызвало. Соловьев снизился до 1000 м. И вот тут реакция самолета на взятие ручки «на себя» оказалась непредвиденной. Перегрузка значительно превзошла ожидаемую. Рефлекторным движением ручки «от себя» летчик попытался выровнять самолет, но при этом создалась отрицательная перегрузка в 8 единиц. Еще одно взятие ручки — и перегрузка превысила разрушающую. Расшифрованные после катастрофы пленки системы объективного контроля свидетельствовали о том, что Т-102 попал в неисследованную до этого область резонансных режимов с «раскачкой» самолета в продольном канале с возрастающими амплитудами. Развитие аварийной ситуации было таким скоротечным, что опытнейший пилот, Заслуженный летчик-испытатель СССР Герой Советского Союза Е.С.Соловьев, давший путевку в небо не одному самолету «Су», даже не успел прибегнуть к использованию средств спасения. Анализ обстоятельств катастрофы позволил установить истинную причину трагедии и внести необходимые изменения в настройку системы дистанционного управления.

В том же 1978 г. на Дальневосточном машиностроительном заводе им. Ю.А.Гагарина в Комсомольске-на-Амуре приступили к подготовке выпуска установочной партии Су-27 с двигателями АЛ-21Ф-ЗАИ. Одновременно здесь пелась постройка двух опытных экземпляров Г-Н), на которые впервые планировалось установить двигатели АЛ-31Ф. Эти дне машины получили названия Т-103 и Т-104. Окончательную сборку и дооборудование самолетов предполагалось осуществить в опытном производстве МЗ им. Сухого в Москве. Постройка Т-103 (серийный № 01-01) на комсомольском заводе завершилась в августе 1978 г. и в конце тогоже месяца, после отстыковки от него консолей крыла и оперения, на специальном транспортном приспособлении в кабине грузового самолета Ан-22 «Антей» он был доставлен на аэродром ЛИИ в Жуковском, а затем перевезен па МЗ им. П.О.Сухого. Поставку первых летных экземпляров двигателей АЛ-31Ф пришлось ждать еще несколько месяцев. Наконец, в марте 1979 г. сборка Т-103 завершилась, и самолет был перебазирован на летную станцию ОКБ в Жуковском.

Под руководством ведущею инженера по летным испытаниям В.П.Иванова были проведены необходимые наземные проверки, и В.С.Ильюшин выполнил на Т-103 первые рулежки. Однако методический совет ЛИИ. возглавляемый начальником института В.В.Уткиным, не спешил с выдачей заключения на первый вылет: слишком много полетных ограничений имели первые экземпляры нового двигателя И результате было решено снять двигатели с самолета и отправить их на доработку на МЗ «Сатурн». (Специалистам ОКБ A.M.JIюльки удалось в короткие сроки выполнить необходимые работы, и большинство ограничений с первых АЛ-31Ф было снято. Наконец. 23 августа 1979 т. В.С.Ильюшин поднял Т-103 в первый полет. Через месяц на испытания поступил и ‘ПО-4 (серийный № 01-02), на который затем впервые установили бортовую радиолокационную станцию «Меч» (в первом ее варианте со щелевой антенной). Первый полет на Т-104 был выполнен 31 октября I979 г. Обе машины поначалу использовались для летной отработки новых двигателей. Затем Т-103 был доработан для исследований на учебно-тренировочном комплексе «Нитка» в интересах создания корабельной модификации Су-27, а па Т-104 проводились i к i витания РЛС. Основные летно-технические характеристики, такие как максимальная скорость или дальность полета, на этих машинах, как и на первых двух опытных Т-10, не определялись.

Здесь стоит заметить, что двигатели АЛ- 31Ф, применявшиеся на самолетах Т-103 и Т-104, отличались от всех последующих, которыми стали комплектоваться серийные истребители Су-27, нижним расположением выносных коробок самолетных агрегатов (ВКА). Такая схема имела ряд эксплуатационных преимуществ: генераторы и гидронасосы, расположенные под двигателем, было проще и удобнее обслуживать с земли, к тому же выше была пожаробезопасность — случайно вытекшее из агрегатов масло не могло попасть на раскаленные детали двигателя. Недостаток был один: нижнее расположение ВКА требовало увеличивать поперечное сечение гондол двигателей, что вело к росту лобового сопротивления. Позднее из соображений аэродинамики компоновку коробки агрегатов на двигателе переделали на верхнюю, но на том этапе предпочтение было отдано варианту АЛ-31Ф с нижними ВКА.

НЕЛЕГКИЙ ПУТЬ В СЕРИЮ

К концу 1979 г. в программе испытаний Су-27 принимали участие уже три опытных самолета (Г10-1, Т-103 и Т-104), вскоре к ним должны были присоединиться и первые машины установочной серии. Казалось, все шло по намеченным планам и через пару лет новый истребитель может поступить на вооружение. Однако против запуска в серию самолета в существующей компоновке категорически возражал …главный конструктор М.П.Симонов.

В 1976 г., когда еще только строился Т-101, определился ряд обстоятельств, которые ставили под угрозу выполнение некоторых пунктов технического задания (ТЗ), касающихся требований к летным характеристикам будущего Су-27. Как уже отмечалось выше, проблемы с созданием неохлаждаемых лопаток турбины двигателя и необходимость введения их охлаждения с отбором воздуха от компрессора привели к повышению удельного расхода топлива на крейсерском режиме на 5% (уже в эскизном проекте АЛ-31Ф указывался минимальный удельный расход топлива 0.64 кг/(кгс-ч) вместо заданных 0.61 кг/(кгс-ч), а на практике он возрос еще почти на 5%) и к снижению тяговых характеристик двигателя при полете на большой скорости на высоте и у земли (стендовая тяга сохранялась на уровне заданных 12500 кгс). Во-вторых, разработчики радиоэлектронного оборудования «не укладывались» в весовые характеристики, определенные техническими заданиями на соответствующие комплексы.

Суммарное превышение массы оборудования составляло несколько сотен килограммов, что, естественно, влекло за собой общее перетяжеление самолета, а главное — смещение его центровки вперед, в результате чего Т-10 становился статически устойчивым в продольном канале. В результате утрачивалось основное преимущество разработанной статически неустойчивой компоновки — отсутствие потерь на балансировку. Теперь чтобы сбалансировать самолет, требовалось отклонять стабилизатор носком вниз, и его подъемная сила уже не добавлялась, а вычиталась из подъемной силы крыла. Естественно, что при этом несущие свойства самолета снижались. Весовые лимиты были превышены и создателями ракетного вооружения.

Уточненный расчет летно-технических характеристик самолета Су-27 с учетом всех этих обстоятельств наглядно свидетельствовал: максимальная дальность полета истребителя с полной заправкой топливом лишь немного превышала 3000 км, максимальная скорость полета составляла 2230 км/ч, скорость полета у земли — 1350 км/ч, т.е. по этим трем основным показателям Су-27 на 10-20%уступал ТТТ. Расчеты подтверждались исследованиями специалистов Сибирского’ научно-исследовательского института авиации (СибНИА), в котором с 1972 г. проводился основной объем аэродинамических исследований по теме Су-27. Уточненные данные Су-27 и F-15 были использованы при математическом и полунатурном моделировании воздушных боев с участием этих самолетов, которое проводилось в НИИАС МАП в отделении, возглавляемом доктором технических наук А.С.Исаевым. Результаты этого моделирования также оказались неутешительными: безусловного превосходства над американским аналогом уже не было.

Назревала необходимость коренного пересмотра проекта Су-27. Еще в 1975-1976 гг. в ОКБ и СибНИА были сформулированы основные направления совершенствования конструкции Т-10, благодаря которым в создавшихся условиях можно было обеспечить получение заданных характеристик. Для повышения дальности и скорости полета предстояло значительно снизить аэродинамическое сопротивление самолета за счет уменьшения кривизны профиля крыла, а также омываемой поверхности и миделя фюзеляжа и центроплана. Поднять дальность могло и увеличение внутреннего запаса топлива, нужно было только найти место, куда еще можно «залить» керосин. Для повышения характеристик самолета на больших углах атаки и скольжения было предложено ввести механизацию передней кромки крыла и изменить расположение вертикального оперения. Таким образом, ревизии предстояло подвергнуть такие основополагающие элементы компоновки самолета, как форма и площадь крыла, конфигурация поперечных сечений головной части фюзеляжа, центроплана и мотогондол, размещение оперения.

Убежденным сторонником такого подхода выступал главный конструктор М.П.Симонов, однако руководство Министерства авиационной промышленности имело иное мнение. Министр В.А.Казаков рассчитывал на возможность постепенной доводки истребителя принятой компоновки за счет незначительных доработок конструкции, увеличения запаса топлива и т.п. Поддерживали его и многие представители заказчика. В принципе не против был и Генеральный конструктор Е.А.Иванов. Слишком большие затраты были уже сделаны, и прекращение осваивавшегося в Комсомольске-на-Амуре серийного производства с переводом завода на выпуск повой модели означало не только новые расходы, но И дальнейшее откладывание сроков принятия самолета на вооружение.

Однако М.Н.Симонов упорно настаивал на необходимости радикальной переработки проекта, тем более, что руководимой им группой единомышленников при участии ученых СибНИА еще в 1976-1977 гг. в инициативном порядке была создана, а в последующие два года испытана в аэродинамической трубе новая компоновка истребителя, лишенная недостатков существующей. Главный конструктор (а с конца 1977 г. — и первый заместитель Генерального конструктора) проявил исключительную энергию и смог убедить руководство пойти па риск и принять меры но кардинальному изменению конструкции уже вышедшего на испытания самолета. На положительное решение этого вопроса повлияла поддержка Симонова заместителем министра авиационной промышленности И.С.Силаевым (в 1981-1985 гг. — министр авиационной промышленности СССР).

Вот как вспоминает об этом сам М.П.Симонов: «Мы ставили задачу создать самолет, превосходящий по боевой эффективности любой другой истребитель, стоявший на вооружении ВВС в то время, — самолет завоевания господства в воздухе Чтобы соответствовать этому назначению, необходимо было самолет перепроектировать. Надо было получить разрешение па это МАП. Мы обратились к Ивану Степановичу Силаеву, бывшему тогда заместителем министра. Мы сказали ему: *У нас все основано на данных расчетов и математическом полушплрном моделировании». Силаев мужественно поддержал нас. Он только спросил меня: -Ты уверен, что нет другого пути?» «Конечно, уверен, хотя есть и другой: выпустить серийно сотни и тысячи посредственных истребителей, и если войны не будет, об их посредственности никто не узнает. Но мы же работаем на тог черный день, когда наше оружие должно быть на самом высоком уровне. и поэтому другого пути нет!».

Вскоре после этого М.П.Симонов перешел на работу в министерство, на должность заместителя министра авиационной промышленности по новой технике. Главным конструктором Су27 в декабре 1979 г. был назначен Артем Александрович Колчин, под руководством которого и были проведены работы по созданию принципиально нового варианта самолета. Как показало время, принятое непростое решение оказалось единственно верным, и в результате все-таки был создан истребитель, который и ныне, по прошествии почти двух десятилетий, считается одним из лучших в мире Выпуском Су-27 в окончательном варианте компоновки МЗ им. П.О.Сухого подтвердил свою репутацию мирового лидера авиастроительной индустрии, сохранив верность многолетий традициям ОКБ не сдавать на вооружение посредственных самолетов.

ОТ Т-10 К Т-10С

Вариант истребителя с новой компоновкой получил в ОКБ шифр Т-10С. Полномасштабные работы по его проектированию развернулись в 1979 г. Предварительные исследования по поиску путей преодоления недостатков Т-10 «первой редакции» и обеспечения заданных в ТЗ характеристик, выполненные в ОКБ и СибНИА (здесь этими работами руководил главный аэродинамик института кандидат технических наук Станислав Тиморкаевич Кашафутдипов), позволили сформулировать основные направления модификации исходной компоновки. По мере их проработки Т-10С в конструктивно-компоновочном плане все больше и больше отдалялся от Т-10. В итоге стало ясно, что конструкторам придется проектировать фактически новый самолет. По образному выражению М.П.Симонова, от Т-10 на Т-10С сохранились лишь шины колес основных опор шасси, да катапультное кресло летчика. Сомнению подвергнуты не были только общие принципы, заложенные в проект Су-27 еще П.О.Сухим, — интегральная компоновка несущего корпуса, статически неустойчивая схема, электродистанционная система управления, размещение двигателей в изолированных гондолах с воздухозаборниками под несущим корпусом и т.п.

Т-10С получил новое крыло с прямолинейной передней кромкой и уменьшенной кривизной профиля (деформация срединной поверхности и аэродинамическая крутка сохранялись, только в меньшем объеме). Не оправдавшие себя оживальпые законцовки крыла уступили место традиционным, с постоянным углом стреловидности по передней кромке, при этом на их торцах установили пусковые устройства ракет «воздух-воздух», что позволило, во-первых, отказаться от специальных противофлаттерпых грузов, применявшихся на Т-10, а во-вторых, увеличить количество подвешиваемых на истребитель ракет с 8 до 10. Вместо пусковых устройств ракет на концах крыла могли крепиться контейнеры с аппаратурой радиоэлектронного противодействия. Площадь крыла возросла с 59-4 до 62 м2, существенно изменилась его механизация. Элерон и поворотный закрылок уступили место единому органу управления — флаперону, а переднюю кромку занял отклоняемый носок (на Т-10 передняя кромка крыла не имела механизации), при этом был обеспечен режим автомагического адаптивного отклонения носка и флаперона, реализующий так называемую концепцию полета «по огибающей поляр».

Для снижения аэродинамического сопротивления доработали головную часть фюзеляжа: были изменены ее обводы, применен новый фонарь кабины.

Сечение головной части фюзеляжа в зоне первого топливного бака возросло, а в зоне миделя фюзеляжа, наоборот, уменьшилось. Изменилась компоновка центральной хвостовой балки, которую снабдили цилиндрической законцовкой, являющейся продолжением заднего топливного бака-отсека. Одновременно удалось увеличить общий запас горючего во внутренних баках истребителя до 9.4 т. Значительно «облагородить» обводы мотогондол и снизить их массу позволило решение применить на Т-10С модификацию ТРДДФ АЛ-31Ф с верхним расположением коробки самолетных агрегатов и агрегатов двигателя. При сохранении общей компоновки воздухозаборников на новом истребителе была введена система защиты двигателей от попадания посторонних предметов на рулении, разбеге и пробеге с помощью выпускаемых в воздушные каналы предохранительных сеток, одновременно на нижней поверхности воздухозаборников оборудовали створки дополнительной подпитки.

Для обеспечения необходимой эффективности органов путевой и поперечной устойчивости, продольного, поперечного и путевого управления па больших углах атаки существенным доработкам подверглась компоновка хвостового оперения. Для обеспечения удобного доступа к расположенным над двигателями выносным коробкам агрегатов двухкилевое вертикальное оперение разнесли широко в стороны и разместили па силовых балках по обеим сторонам мотогондол, при этом для килей было найдено оптимальное место в вихревой системе, генерируемой наплывами и консолями крыла. В результате значительно улучшилась путевая устойчивость и управляемость самолета при полете с большими углами атаки и скольжения. Одновременно Т-10С оснастили дополнительными подбалочными гребнями (фальшкилями), улучшающими противоштопорные характеристики.

Установка вертикального оперения на хвостовых балках, кроме того, позволила разместить обтекатели гидравлических рулевых приводов консолей стабилизатора в аэродинамической тени за килями. Несколько изменилась форма в плане горизонтального оперения, а смещение полуосей вращения консолей стабилизатора улучшило их флаперные характеристики и позволило отказаться от противофлаттерных грузов, применявшихся на Т-10. Тормозные щитки — створки основных опор шасси, устанавливавшиеся на истребителях исходной компоновки и не прошедшие испытаний из-за тряски горизонтального оперения при их выпуске, уступили место безмоментному тормозному щитку большом площади, размещенному на верхней поверхности фюзеляжа за кабиной летчика.

Изменилось шасси: основные опоры снабдили пространственной «косой» осью вращения, благодаря чему стадо возможным упростить уборку стоек в центроплан и отказаться от дополнительного элемента опоры — ломающегося подкоса. Функцию подкоса стала выполнять гондола двигателя, на наружной поверхности которой разместили замок выпущенного положения стойки. При этом удалось снизить площадь поперечного сечения несущею корпуса в зоне ниш уборки шасси. Для предотвращения попадания в воздухозаборники брызг, поднимаемых колесом передней опоры шасси при взлете и посадке во время или после дождя, переднюю стойку сместили более чем на 3 м назад. При этом передняя опора стала воспринимать существенно большие нагрузки, и ее пришлось значительно усилить. Уменьшение базы шасси обеспечило отличные характеристики маневренности самолета на земле.

В целом реализации мероприятий по модификации компоновки истребителя позволила уменьшить мидель самолета па 15 благодаря чему аэродинамическое сопротивление при полете с околозвуковыми и сверхзвуковыми скоростями снизилось на 18-20%. Уменьшение кривизны профиля крыла и омываемой поверхности несущего корпуса позволило существенно уменьшить дозвуковое сопротивление. В сочетании с повышением несущих свойств планера и обеспечением хороших характеристик поперечной и путевой устойчивости и управляемости во всех трех каналах это позволило реализовать отличные показатели маневренности истребителя, особенно на больших углах атаки, а также получить заданные характеристики дальности полета.

ИСПЫТАНИЯ

В 1980 г., когда на МЗ им. П.О.Сухого уже полным ходом шли работы по изготовлению опытных экземпляров истребителя новой компоновки, на заводе в Комсомольске-на-Амуре завершалась сборка первых самолетов установочной партии. В конструктивном плане они практически полностью соответствовали опытным Т-101 и Т-102, только кили у них были установлены с некоторым развалом, как у Т-103- Силовая установка их по-прежнему включала двигатели АЛ-21Ф-ЗАИ. Несмотря на то, что с будущим серийным Су-27 они имели очень мало общего, от достройки самолетов установочной партии решили все-таки не отказываться и использовать их для отработки и доводки системы управления вооружением и другого оборудования истребителя, пока будут изготавливаться и проходить начальный этап летных испытаний первые Т-10С. Тем самым планировали компенсировать неизбежное отставание по срокам, связанное с необходимостью переналадки производства на выпуск самолета новой компоновки.

Головной экземпляр установочной партии, получивший шифр Т-105 и серийный № 02-02 (№ 02-01 имел экземпляр для статических испытаний), был готов в июне 1980 г. В том же году за ним последовали Т-106 (№ 02-03) и Т-109 (№ 02-04) (шифры Т-107 и Т-108 были зарезервированы для первых Т-10С). В 1981 г. комсомольский завод построил еще две машины -Т-1010 (№ 03-01) иТЮ-11 (№ 03-02), доведя количество выпущенных летных экземпляров установочной партии до пяти (для отличия от будущих серийных машин они именовались «Су-27 типа Т-105»). Всего же, с учетом опытных образцов, собранных на МЗ им. П.О.Сухого, к 1982 г. было изготовлено 9 летных экземпляров самолета исходной компоновки и один экземпляр для статических испытаний.

Самолеты установочной партии использовались для летных испытаний и доводки бортового радиоэлектронного оборудования. В начале 1981 г. на самолет Т-105 впервые установили исходный вариант оптико-электронной прицельной системы ОЭПС-27 с цифровым вычислителем «Аргон-15». Этот экземпляр был специально выделен для проведения автономных испытаний ОЭПС. Несколько позднее для этих же целей был оборудован и Т-1011. Испытания ОЭПС-27 «первой редакции» проводились до середины 1982 г., когда было принято решение о замене БЦВМ «Аргон-15» на более совершенную Ц100, что потребовало переработки всего математического обеспечения ОЭПС-27. В конце 1982 г. доработанная оптико-электронная прицельная система была установлена на Т-1011 для проведения ее испытания к составе системы управления вооружением С-27.

Значительную роль в проектировании и доводке комплекса БРЭО истребителя Су-27 сыграл Государственный научно-исследовательский институт авиационных систем (в то время — НИИАС МАП), возглавляемый академиком Е.А.Федосовым. В ГосНИИАС было создано и отлажено все программное обеспечение для БЦВМ истребителей 4-го поколения. Для отработки радиолокационных и оптико-электронных прицельных систем и совершенствования алгоритмического обеспечения СУВ С-27 в институте был построен комплекс полунатурного моделирования КПМ-2700. Именно на стендах этого комплекса сначала проходили проверку и испытания все элементы СУВ С-27, и лишь после этого они устанавливались на опытные самолеты.

Постройку первого опытного образца истребителя в компоновке Т-10С названного Т-107 (иначе — Т-10С-1, серийный № 04-03), завершили на МЗ им. П.О.Сухого в конце 1980 г. В марте 1981 г. он был перебазирован на летную станцию ОКБ в Жуковском. Началась подготовка к первому полету. Как и 4 года назад, когда на испытания выходил первый Т-10, ведущим инженером по самолету был назначен Р.Г.Ярмарков, а летчиком-испытателем — В.С.Ильюшпп. 20 апреля 1981 г. Ильюшин впервые поднял Т-107 в воздух. Полет прошел успешно. В том же году были собраны статический (Т-108, или Т-10С-0, серийный № 04-04) и второй летный (Т-1012, или Т-10С-2, № 04-05) экземпляры истребителя Т-10С. Самолеты Т-107 и Т-1012 использовались для определения основных летно-технических характеристик, характеристик устойчивости и управляемости самолета новой компоновки, а также для оценки работы новой силовой установки с верхними коробками приводов.

К сожалению, обеим машинам не суждена была долгая жизнь. 3 сентября 1981 г. был потерян Т-107: при выполнении задания по определению максимальной продолжительности полета на полигоне недалеко от ЛИИ самолет неожиданно для летчика остался без топлива, и В.С.Ильюшину пришлось катапультироваться. Машина с практически пустыми баками упала на землю и разрушилась, а впервые в жизни катапультировавшийся Ильюшин благополучно опустился на парашюте. «Оргвыводы» нe заставили себя долго ждать: был снят с должности главный конструктор А.А.Колчин, уволен ведущий инженер Р.Г.Ярмарков, а В.С.Ильюшина навсегда отстранили от полетов. 23 декабря того же года потерпел катастрофу и Т-1012: при выполнении полета на предельном режиме (число М=2.35, скоростной напор около 9450 кг/м2) произошло разрушение головной части фюзеляжа, и самолет развалился в воздухе, пилотировавший его летчик-испытатель ОКБ Александр Сергеевич Комаров погиб.

Причины катастрофы А.С.Комарова выяснить так и не удалось. По одной из версий, виновниками трагедии стали блоки контрольно-записывающей аппаратуры, установленные на время испытаний в отсеке наплыва крыла, которые сорвались со своих мест при маневре самолета на максимально допустимой скорости и повредили один из силовых элементов конструкции головной части фюзеляжа, в результате чего произошло ее разрушение в воздухе. Однако в официальном заключении аварийной комиссии указывалось, что причина этой катастрофы, происшедшей на полигоне Белый Омут в 70 км восточнее аэродрома ЛИИ, установлена быть не может. И хотя претензий к материальной части высказано не было, катастрофа Комарова повлияла на судьбу Генерального конструктора Е.А.Иванова. Именно Иванов, готовившийся в то время к выборам в Академию Наук, был непосредственным инициатором этого первого полета па предельном режиме. Спустя некоторое время, в конце 1982 г., он был переведен на другую работу в НИИАС МАП и, лишенный возможности заниматься любимым делом, вскоре умер (это произошло 10 июля 1983 г.).

После снятия с должности А.А.Колчина главным конструктором Су-27 в 1981 г. был назначен Алексей Иванович Кнышев, до этого возглавлявший филиал ОКБ П.О.Сухого на авиационном заводе в Комсомольске-на-Амуре и вложивший много труда в освоение серийного производства сначала Т-10, а затем и Т-10С. А.И.Кнышев и поныне руководит всеми работами по самолету Су-27. В 1983 г. Генеральным конструктором МЗ им. П.О.Сухого был назначен М.П.Симонов, под общим руководством которого продолжились работы по доводке Су-27 и созданию на его базе новых модификаций.

А судьба тем временем готовила программе очередной удар. Результаты начавшихся в соответствии с намеченными сроками летных испытаний первого варианта радиолокационной станции «Меч» свидетельствовали о том, что РЛС по ряду позиций не отвечает требованиям технического задания. Был выявлен целый перечень недостатков, которые, по мнению специалистов, не позволяли обеспечить заданные характеристики даже в условиях достаточно длительной доводки аппаратуры. Основные претензии предъявлялись к цифровому вычислителю и щелевой антенне с электронным сканированием луча в вертикальной плоскости, значительное отставание было и с разработкой программного обеспечения РЛПК.

В результате в мае 1982 г. было принято решение прекратить испытания и дальнейшую доводку РЛС «Меч» в ее первом варианте и разработать для нее новую антенну с механическим сканированием на базе антенны РЛС «Рубин» самолета МиГ-29, но с увеличенным в полтора раза диаметром (применение РЛС со щелевой антенной откладывалось до создания модифицированного варианта истребителя — Су-27М). Создание такой антенны поручалось специалистам ПИИР. Вместо вычислителя разработки НИИП предлагалось использовать БЦВМ нового поколения Ц100, созданную в НИИ цифровой электронно-вычислительной техники (НИИЦЭВТ, г. Москва). Разработка нового программного обеспечения поручалась НИИ-АС МАП. В.КГришин был освобожден от должности Генерального конструктора НПО «Фазотрон» и главного конструктора унифицированной СУВ для истребителей Су-27 и МиГ-29 и назначен главным конструктором СУВ С-27, его заместителем стал Т.О.Бекирбаев.

Усилиями специалистов четырех институтов -НИИП, НИИР, НИИЦЭВТ и НИИАС — поставленная задача была выполнена в очень короткие сроки. Уже в марте 1983 г. было подготовлено заключение о готовности обновленной РЛС (она получила шифр Н001) к летным испытаниям в составе СУВ С-27 на самолетах Су-27. Они проводились в ГК НИИ ВВС в Ахтубинске (ныне — ГЛИЦ им. В.П.Чкалова) и были закончены в начале 1984 г. РЛС была предъявлена на совместные испытания, которые успешно завершились всего через два месяца. После небольших доработок программного обеспечения в 1985 г. CУB С-27 была рекомендована к принятию на вооружение.

И хотя не все задумки конструкторов в конечном итоге удалось реализовать, РЛС Н001 вполне- отвечала современным требованиям. Впервые в отечественной авиационной радиолокации при создании этой РЛК были решены задачи обеспечения режима средней частоты повторения ИМ-пульсов для обнаружения и сопровождения цели со стороны задней полусферы на малых высотах, режима радиокоррекции для управления на первом этапе наведения ракет типа Р-27, применения единого передатчика для работы РЛС и подсвета цели для наводимой ракеты, функционирующего последовательно в режиме импульсного и непрерывного излучения. Использование новых технических решений и современной элементной базы позволило уменьшить массогабаритные характеристики аппаратуры примерно вдвое. по сравнению с техникой предыдущего поколения. Были получены следующие основные характеристики РЛС: дальность обнаружения цели типа «истребитель» — 100 км со стороны передней полусферы и 40 км со стороны задней полусферы, количество одновременно сопровождаемых целей на проходе — 10, количество одновременно атакуемых целей — 1. количество одновременно управляемых ракет — 2. диапазон высот обнаруживаемых целей в телесном угле 120° -от 50-100 м до 25 км. При этом обеспечивалась защита практически от всех существовавших в то время типов помех.

В 1982 г. к программе испытаний нового истребителя присоединились первые самолеты новой компоновки, сопранные на серийном заводе в Комсомольске-на-Амуре, — Т-1015 (серийный № 05-01). Т-1017 (№ 05-02) и, чуть позже, Т-1016(№ 05-04). Облет головного серийного Су-27 выполнил 2 июня 1982 г. летчик-испытатель ОКБ Александр Николаевич Исаков. В следующем году комсомольский завод поставил еще 9 самолетов 5, 6 и 7-й серий (шифры ОКБ Т-1018, Т-1020, Т-1021, Т-1022, Т-1023, Т-1024, Т1О-25, Т-1026 и Т-1027), большинство из которых принимало участие в Государственных совместных испытаниях (ГСИ) истребителя Су-27, проводившихся параллельно с развертыванием серийного производства и началом освоения повой машины в войсках. На самолетах Т-1018 и Т-1022, в частности, доводилась оптико-электронная прицельная система ОЭПС-27 С новым вычислителем Ц100, на Т-1020 и Т-1022 отрабатывались групповые действии истребителей.

Не все было гладко и на этом этапе испытаний. В одном из полетов в 1983 г. у самолета Т-1017, который пилотировал летчик-испытатель Николай Федорович Садовников, при выполнении «площадки» на малой высоте и большой скорости разрушилась часть консоли крыла, при этом обломки конструкции повредили вертикальное оперение. Только благодаря большому мастерству испытателя, впоследствии Героя Советского Союза и мирового рекордсмена, полет завершился благополучно. Н.Ф.Садовников посадил на аэродром поврежденный самолет — без большей части консоли крыла, с обрубленным килем -и тем самым предоставил бесценный материал разработчикам машины. Было установлено, что причиной разрушения стал неверно рассчитанный шарнирный момент, возникающий при отклонении поворотного носка крыла на некоторых режимах полета. Полет Садовпикова расставил все -точки над «i» и в расследовании другого происшествия с одним из первых серийных Су-27 Т-1021 (серийный № 05-03), попавшим примерно в то же время в аналогичную ситуацию при испытаниях в ЛИИ. Однако, в отличие от Т-1017, эта машина была потеряна, а летчику удалось катапультироваться. В срочном порядке были проведены мероприятия по доработке самолета: усилена конструкция крыла и планера в целом.

По результатам испытаний конструкция самолета несколько раз подвергалась дальнейшим доработкам: было произведено усиление головной части фюзеляжа и крыла (выпущенные ранее истребители снабжались дополнительными внешними прочностными накладками, а вновь строящиеся имели усиленные силовой набор и панели обшивки); изменилась форма законцовок вертикального оперения; были упразднены устанавливавшиеся ранее на килях весовые балансиры; для размещения блоков выброса пассивных помех увеличилась длина и строительная высота кормового «ласта» — отсека хвостовой части фюзеляжа между центральной балкой и гондолами двигателей и т.п.

В ходе испытаний в состав ОЭПС-27 была введена нашлемная система целеуказания (НСЦ) «Щель-ЗУМ». Эта аппаратура, разработанная на киевском заводе «Арсенал» (главный конструктор А.К.Михайлик), включала нашлемное визирное устройство и блок оптической локации со сканерным устройством определения угла поворота головы летчика. НСЦ позволяла измерять координаты линии визирования при визуальном слежении за целью летчиком в зоне +60″ по азимуту и от -15° до +60° по углу места при скорости линии визирования до 20°/с, а также осуществлять наведение на цель зоны автоматического захвата ОЛС с одновременной передачей координат линии визирования цели в БРЛС и головки самонаведения ракет. Совместное использование НСЦ и ОЛС позволяло в ближнем маневренном бою сократить время прицеливания, осуществлять быстрый захват цели, обеспечивать целеуказание головкам самонаведения ракет до захода цели в конус возможных углов захвата цели головкой и тем самым осуществлять пуск ракет при максимально допустимых углах.

В середине 80-х гг. завершились государственные испытания и состоялось принятие на вооружение управляемых ракет «воздух-воздух» нового поколения: УР средней дальности Р-27Р и Р-27Т с полуактивной радиолокационной и тепловой головками самонаведения (в 1984 г.), УР ближнего маневренного воздушного боя Р-73 с тепловой головкой самонаведения (в 1985 г.) и УР увеличенной дальности Р-27ЭР и Р-27ЭТ (в 1987 г.). Таким образом, к этому времени состав системы вооружения и бортового оборудования самолета Су-27 сложился окончательно.

Основу БРЭО составила система управления вооружением С-27, включающая: радиолокационный прицельный комплекс РЛПК-27 с РЛС Н001, запросчиком государственного опознавания и цифровым вычислителем Ц100; оптико-электронную прицельную систему ОЭПС-27 с оптико-локационной станцией ОЛС-27, нашлемной системой целеуказания «Щель-ЗУМ» и цифровым вычислителем Ц100; систему единой индикации СЕИ-31 «Нарцисс» с прицельно-пилотажным индикатором на фоне лобового стекла и индикатором прямого видения; систему управления оружием. СУВ взаимодействовала с пилотажно-навигационным комплексом ПНК-10, бортовой частью командной радиолинии управления «Спектр», системой госопознавания, аппаратурой телекодовой связи (ТКС) и аппаратурой бортового комплекса обороны (станцией предупреждения об облучении «Береза», станцией активных помех «Сорбция» и устройствами выброса пассивных помех АПП-50). СУВ С-27 обеспечивала применение самолета Су-27 в наземных системах наведения с командным управлением и полуавтономными действиями с наведением на цель как одиночного самолета, так и группы. Кроме того, были обеспечены автономные групповые действия истребителей (до 12 самолетов в группе).

Первые Су-27 поступили в вооруженные силы в 1984 г., к концу следующего года было выпущено уже значительное количество таких истребителей, и началось массовое перевооружение частей истребительной авиации войск ПВО и ВВС па новый тип самолета. Государственные совместные испытания Су-27 завершились в 1985 г. Полученные результаты свидетельствовали о том. что создан действительно выдающийся самолет, не имеющий себе равных в истребительной авиации по маневренности, дальности полета и боевой эффективности. Однако некоторые системы бортового радиоэлектронного оборудования (в первую очередь, аппаратура РЭП и система управлении групповыми действиями) требовали дополнительных испытаний, которые проводились по специальным программам уже посте окончания ГСИ. После отладки всего комплекса БРЭО Постановлением Совета Министров СССР от 23 aвгycra 1990 г. Су-27 был официально принят на вооружение ВВС и авиации ПВО Советского Союза.

Завершение создания самолета Су-27 было отмечено рядом государственных наград и премий, которые вручили разработчикам, испытателям и изготовителям истребителя. В середине 90-х гг. создатели машины полумили еще одну, не совсем обычную награду. В 1996 г. Союзом дизайнеров Российской Федерации была проведена сертификация самолета Су-27 и его модификации Су-32ФП, высокий дизайнерский уровень которых подтвержден сертификатами № 001 и 002 от 10 июня 1996 г. На прошедшей в декабре 1996 г. — январе 1997 г. выставке-конкурсе «Дизайн-96» самолет Су-27 завоевал первое место (серебряная «Виктория») в номинации «Промышленный дизайн» и «Гран-при» (золотая «Виктория») выставки. При этом было отмечено, что основные черты промышленного дизайна самолета Су-27 оказали и будут оказывать большое влияние на формирование облика отечественных и зарубежных самолетов следующего поколения. В 1997 г. АООТ «ОКВ Cvxoro» совместно с Союзом дизайнеров РФ представило на соискание Государственной премии Российской Федерации в области литературы и искусства по разделу «Промышленный дизайн» истребитель Су-27 и семейство самолетов, созданных на сто базе. На соискание Государственной премии был выдвинут авторский коллектив в составе:

    Сухой Павел Осипович (Генеральный конструктор ОКБ до 1975 г.), посмертно; Симонов Михаил Петрович (Генеральный конструктор «ОКБ Сухого» с 1983 г., в 1976-1979 гг. -главный конструктор самолета Су-27); Авраменко Владимир Николаевич (во время освоения серийного производства Су-27 — директор Комсомолького-на-Амуре АПО, затем директор МЗ им. П.О.Сухого); Антонов Владимир Иванович (заместитель начальника отдела проектов «ОКБ Сухого», один из авторов компоновки Су-27): Ильюшин Владимир Сергеевич (ведущий летчик-испытатель «ОКБ Сухого», поднявший в первый полет и проводивший испытания опытных самолетов Т-10 и Т-10С, в настоящее время -заместитель главного конструктора «ОКБ Сухого»); Кашафутдинов Станислав Тиморкаевич (главный аэродинамик СибНИА, один из авторов аэродинамической компоновки Су-27); Кпышев Алексей Иванович (главный конструктор самолега Су-27 с 1981 г.); Погосян Михаил Асланович (во время разработки модификаций Су-27К, Су-27М, Су-27ИБ — начальник бригады истребителей отдела проектов, затем начальник отдела проектов, главный конструктор, 1-й заместитель Генерального конструктора, в настоящее время — Генеральный директор «ОКБ Сухого»).

СЕРИЙНОЕ ПРОИЗВОДСТВО

Серийный выпуск истребителей Су-27 развернулся в 1982 г. на авиационном заводе в г. Комсомольск-на-Амуре. Это предприятие, имевшее к тому времени почти полувековую историю, уже более 20 лег строило сверхзвуковые самолеты марки «Су». Заложенный летом 1934-го, два года спустя завод № 126 приступил к выпуску разведчиков Р-6 (АНТ-7) конструкции А.Н.Туполсва. С 1938 г. здесь строились дальние бомбардировщики ДБ-3 ОКБ С.В.Ильюшина и их модификации, в первую очередь, ДБ-ЗФ (Ил-4). В военные годы в Комсомольске-на-Амурс собрали более 2700 Ил-4, внесших значительный вклад в победу над врагом. После войны завод выпускал транспортные самолеты Ли-2, а с 1950 г. переключился на производство реактивной авиационной техники. Сначала здесь был освоен выпуск истребителей МиГ-15бис, а затем МиГ-17 и МиГ-17Ф.

Заказать сейчас

Заказчик (контактное лицо)

(E-mail)

Номер телефона

Тип (марка) воздушного судна

Масштаб

Раскраска

Тип подставки

Количество моделей

Кабина

Шасси

Закрылки

Фюзеляж

Салон

Другие пожелания

Вы не робот?

Наши партнеры